OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 30 — Oct. 20, 2012
  • pp: 7374–7383

Spatiotemporal structure of a laser beam over 144 km in a Canary Islands experiment

Alexandre S. Gurvich, Michael E. Gorbunov, Olga V. Fedorova, Gottfried Kirchengast, Veronika Proschek, Gonzalo González Abad, and Keith A. Tereszchuk  »View Author Affiliations


Applied Optics, Vol. 51, Issue 30, pp. 7374-7383 (2012)
http://dx.doi.org/10.1364/AO.51.007374


View Full Text Article

Enhanced HTML    Acrobat PDF (1018 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We analyzed the observations of scintillations in a laser beam (532 nm, 200mW power) traveling along a 144 km path at an altitude of 2.2–2.4 km above sea level, just above the atmospheric boundary layer, between the islands of La Palma and Tenerife. The observations were performed during nighttime on 18 July 2011, by means of a telescope with an aperture diameter of 1 m. Strong scintillations were observed. The estimates of spatial spectra and correlation functions indicated that the observed intensity fields possess, statistically, a locally isotropic structure, which agrees with the idea of a locally isotropic turbulence. The estimates of spatial autospectra and autocorrelation functions of the intensity field indicated that the characteristic scale of the internal structure of the observed clusters is 6.5–8 mm, while the characteristic size of the clusters is 4–5 cm. The major contribution to the observed scintillations comes from the inhomogeneities of the intensity field with scales from 1–2 cm up to 10–12 cm. The analysis of the cross-spectra indicated that the hypothesis of frozen turbulence introduced by Taylor can be used for the description of spatiotemporal structure of intensity fluctuations of laser beams traveling through long paths in the atmosphere.

© 2012 Optical Society of America

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: June 27, 2012
Manuscript Accepted: August 17, 2012
Published: October 18, 2012

Citation
Alexandre S. Gurvich, Michael E. Gorbunov, Olga V. Fedorova, Gottfried Kirchengast, Veronika Proschek, Gonzalo González Abad, and Keith A. Tereszchuk, "Spatiotemporal structure of a laser beam over 144 km in a Canary Islands experiment," Appl. Opt. 51, 7374-7383 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-30-7374


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. M. Obukhov, “Structure of the temperature field in a turbulent flow,” Izv. Akad. Nauk. SSSR Ser. Geogr. Geophys. 13, 58–69 (1949).
  2. S. Corrsin, “On the spectrum of isotropic temperature fluctuations in an isotropic turbulence,” J. Appl. Phys. 22, 469–473 (1951). [CrossRef]
  3. G. I. Taylor, “The spectrum of turbulence,” Proc. R. Soc. Lond. Ser. A 164, 476–490 (1938).
  4. L. R. Tsvang, “Some characteristics of the spectra of temperature pulsations in the boundary layer of the atmosphere,” Izv. Akad. Nauk. SSSR Ser. Geophys. 10, 1594–1600(1963).
  5. A. S. Gurvich, “Influence of the temporal evolution of turbulent inhomogeneities on frequency spectra,” Izv. Atmos. Ocean. Phys. 16, 231–237 (1980).
  6. V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (Keter, 1971).
  7. M. A. Vorontsov, G. W. Carhart, V. S. Rao Gudimetla, T. Weyrauch, E. Stevenson, S. L. Lachinova, L. A. Beresnev, J. Liu, K. Rehder, and J. F. Riker, “Characterization of atmospheric turbulence effects over 149 km propagation path using multi-wavelength laser beacons,” in Proceedings of the 2010 AMOS Conference (2010), p. E18.
  8. A. S. Gurvich and V. Kan, “Structure of air density irregularities in the stratosphere from spacecraft observations of stellar scintillation: 1. Three-dimensional spectrum model and recovery of its parameters,” Izv. Atmos. Ocean. Phys. 39, 300–310 (2003).
  9. V. F. Sofieva, A. S. Gurvich, F. Dalaudier, and V. Kan, “Reconstruction of internal gravity wave and turbulence parameters in the stratosphere using GOMOS scintillation measurements,” J. Geophys. Res. 112, D12113 (2007). [CrossRef]
  10. V. I. Tatarskii, “Shortwave propagation in a medium with random heterogeneities in approximate Markovian random process,” Sov. Phys. JETP 29, 1133–1138 (1969).
  11. S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics, Vol. 3: Elements of Random Fields (Springer-Verlag, 1987).
  12. J. S. A. Brooke, P. F. Bernath, G. Kirchengast, C. B. Thomas, J.-G. Wang, K. A. Tereszchuk, G. González Abad, R. J. Hargreaves, C. A. Beale, J. J. Harrison, S. Schweitzer, V. Proschek, P. A. Martin, V. L. Kasyutich, C. Gerbig, O. Kolle, and A. Loescher, “Greenhouse gas measurements over a 144 km open path in the Canary Islands,” Atmos. Meas. Tech.5 (in press).
  13. G. Kirchengast and S. Schweitzer, “Climate benchmark profiling of greenhouse gases and thermodynamic structure and wind from space,” Geophys. Res. Lett. 38, L13701(2011). [CrossRef]
  14. N. Perlot, D. Giggenbach, H. Henniger, J. Horwath, M. Knapek, and K. Zettl, “Measurements of the beam-wave fluctuations over a 142 km atmospheric path,” Proc. SPIE 6304, 63041O (2006). [CrossRef]
  15. A. Ishimaru, “The beam wave case and remote sensing,” in Topics in Applied PhysicsJ. W. Strohbehn, ed. (Springer-Verlag, 1978), pp. 129–170.
  16. M. E. Gracheva and A. S. Gurvich, “Strong fluctuations in the intensity of light propagated through the atmosphere close to the Earth,” Radiophys. Quantum Electron. 8, 511–515 (1965).
  17. G. R. Ochs and R. S. Lawrence, “Saturation of laser-beam scintillation under conditions of strong atmospheric turbulence,” J. Opt. Soc. Am. 59, 226–227 (1969). [CrossRef]
  18. G. R. Ochs, R. R. Bergmtan, and J. R. Snyder, “Laser-beam scintillation over horizontal paths from 5.5 to 145 kilometers,” J. Opt. Soc. Am. 59, 231–234 (1969). [CrossRef]
  19. A. M. Yaglom, Correlation Theory of Stationary and Related Random Functions (Springer-Verlag, 1987), Vols. 1 and 2.
  20. A. S. Gurvich, V. V. Pakhomov, and A. M. Cheremukhin, “The isotropy of refractive-index fluctuations of small-scale turbulence in the atmospheric surface layer,” Izv. Atmos. Ocean. Phys. 7, 49–52 (1971).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited