OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 31 — Nov. 1, 2012
  • pp: 7466–7474

Variable ultrabroadband and narrowband composite polarization retarders

Thorsten Peters, Svetoslav S. Ivanov, Daniel Englisch, Andon A. Rangelov, Nikolay V. Vitanov, and Thomas Halfmann  »View Author Affiliations


Applied Optics, Vol. 51, Issue 31, pp. 7466-7474 (2012)
http://dx.doi.org/10.1364/AO.51.007466


View Full Text Article

Enhanced HTML    Acrobat PDF (464 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and experimentally demonstrate novel types of composite sequences of half-wave and quarter-wave polarization retarders, permitting operation at either ultrabroad spectral bandwidth or narrow bandwidth. The retarders are composed of stacked standard half-wave retarders and quarter-wave retarders of equal thickness. To our knowledge, these home-built devices outperform all commercially available compound retarders, made of several birefringent materials.

© 2012 Optical Society of America

OCIS Codes
(260.1440) Physical optics : Birefringence
(260.2130) Physical optics : Ellipsometry and polarimetry
(260.5430) Physical optics : Polarization

ToC Category:
Physical Optics

History
Original Manuscript: August 16, 2012
Manuscript Accepted: September 17, 2012
Published: October 22, 2012

Citation
Thorsten Peters, Svetoslav S. Ivanov, Daniel Englisch, Andon A. Rangelov, Nikolay V. Vitanov, and Thomas Halfmann, "Variable ultrabroadband and narrowband composite polarization retarders," Appl. Opt. 51, 7466-7474 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-31-7466


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Hecht, Optics, 4th ed. (Addison Wesley, 2002).
  2. D. Grischkowsky, S. r. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990). [CrossRef]
  3. J.-B. Masson and G. Gallot, “Terahertz achromatic quarter-wave plate,” Opt. Lett. 31, 265–267 (2006). [CrossRef]
  4. S. Hanany, J. Hubmayr, B. R. Johnson, T. Matsumura, P. Oxley, and M. Thibodeau, “Millimeter-wave achromatic half-wave plate,” Appl. Opt. 44, 4666–4670 (2005). [CrossRef]
  5. G. Pisano, G. Savini, P. A. R. Ade, V. Haynes, and W. K. Gear, “Achromatic half-wave plate for submillimeter instruments in cosmic microwave background astronomy: experimental characterization,” Appl. Opt. 45, 6982–6989 (2006). [CrossRef]
  6. T. Matsumura, S. Hanany, P. A. R. Ade, B. R. Johnson, T. J. Jones, P. Jonnalagadda, and G. Savini, “Performance of three- and five-stack achromatic half-wave plates at millimeter wavelengths,” Appl. Opt. 48, 3614–3625 (2009). [CrossRef]
  7. Z. Zhuang, Y. J. Kim, and J. S. Patel, “Achromatic linear polarization rotator using twisted nematic liquid crystals,” Appl. Phys. Lett. 76, 3995–3997 (2000). [CrossRef]
  8. M. D. Lavrentovich, T. A. Sergan, and J. R. Kelly, “Switchable broadband achromatic half-wave plate with nematic liquid crystals,” Opt. Lett. 29, 1411–1413 (2004). [CrossRef]
  9. D. Clarke, “Achromatic halfwave plates and linear polarization rotators,” Opt. Acta 14, 343–350 (1967). [CrossRef]
  10. J. M. Beckers, “Achromatic linear retarders,” Appl. Opt. 10, 973–975 (1971). [CrossRef]
  11. J. M. Beckers, “Achromatic linear retarders with increased angular aperture,” Appl. Opt. 11, 681–682 (1972). [CrossRef]
  12. S. Pancharatnam, “Achromatic combinations of birefringent plates. Part II: an achromatic quarter-wave plate,” Proc. Indian Acad. Sci. XLI, 137–144 (1955).
  13. C. J. Koester, “Achromatic combinations of half-wave plates,” J. Opt. Soc. Am. 49, 405–407 (1959). [CrossRef]
  14. A. M. Title, “Improvement of birefringent filters. 2: achromatic waveplates,” Appl. Opt. 14, 229–237 (1975). [CrossRef]
  15. C. M. McIntyre and S. E. Harris, “Achromatic wave plates for the visible spectrum,” J. Opt. Soc. Am. 58, 1575–1580 (1968). [CrossRef]
  16. A. Ardavan, “Exploiting the Poincaré–Bloch symmetry to design high-fidelity broadband composite linear retarders,” New J. Phys. 9, 24 (2007). [CrossRef]
  17. S. Wimperis, “Broadband, narrowband, and passband composite pulses for use in advanced NMR experiments,” J. Magn. Reson., Ser. A 109, 221–231 (1994). [CrossRef]
  18. H. Cummins, G. Llewellyn, and J. Jones, “Tackling systematic errors in quantum logic gates with composite rotations,” Phys. Rev. A 67, 042308 (2003). [CrossRef]
  19. M. H. Levitt, “Composite pulses,” Prog. Nucl. Magn. Reson. Spectrosc. 18, 61–122 (1986). [CrossRef]
  20. S. S. Ivanov, A. A. Rangelov, N. V. Vitanov, T. Peters, and T. Halfmann, “Highly efficient broadband conversion of light polarization by composite retarders,” J. Opt. Soc. Am. A 29, 265–269 (2012). [CrossRef]
  21. B. Lyot, “Filter monochromatique polarisant et ses applications en physique solaire,” Ann. Astrophys. (Paris) 7, 32–79 (1944).
  22. I. Šolc, Česk. Časopis Fys. 3, 366 (1953).
  23. J. M. Beckers, L. Dickson, and R. S. Joyce, “Observing the sun with a fully tunable Lyot-Ohman filter,” Appl. Opt. 14, 2061–2066 (1975). [CrossRef]
  24. G. A. Kopp, M. J. Derks, D. F. Elmore, D. M. Hassler, J. C. Woods, J. L. Streete, and J. G. Blankner, “Tunable liquid-crystal filter for solar imaging at the He i 1083 nm line,” Appl. Opt. 36, 291–296 (1997). [CrossRef]
  25. J. W. Evans, “Solc birefringent filter,” J. Opt. Soc. Am. 48, 142–143 (1958). [CrossRef]
  26. I. Šolc, “Birefringent chain filters,” J. Opt. Soc. Am. 55, 621–625 (1965). [CrossRef]
  27. A. J. Shaka, “Composite pulses for ultra-broadband spin inversion,” Chem. Phys. Lett. 120, 201–205 (1985). [CrossRef]
  28. D. Clarke, “Interference effects in Pancharatnam wave plates,” J. Opt. A Pure Appl. Opt. 6, 1047–1051(2004). [CrossRef]
  29. R. C. Jones, “A new calculus for the treatment of optical systems,” J. Opt. Soc. Am. 31, 488–493 (1941). [CrossRef]
  30. G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163, 95–102 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited