OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 31 — Nov. 1, 2012
  • pp: 7482–7486

Optical bistability based on an analog of electromagnetically induced transparency in plasmonic waveguide-coupled resonators

Yudong Cui and Chao Zeng  »View Author Affiliations

Applied Optics, Vol. 51, Issue 31, pp. 7482-7486 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (542 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have investigated numerically an optical bistability effect based on an analog of electromagnetically induced transparency (EIT) in a nanoscale plasmonic waveguide-coupled resonator system. The system consists of a metal-insulator-metal waveguide side-coupled with a slot cavity and a nanodisk cavity containing Kerr nonlinear material. By finite-difference time-domain simulations, the EIT-like spectral peak has a redshift with an increase of the dielectric constant of the nanodisk cavity. More importantly, we have achieved an optical bistability with threshold intensity about three times lower than that of recent literature [Appl. Opt. 50, 5287 (2011)]. The results show that our plasmonic structure can find more excellent application in highly integrated optical circuits, especially all-optical switching.

© 2012 Optical Society of America

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(190.1450) Nonlinear optics : Bistability
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Lasers and Laser Optics

Original Manuscript: August 29, 2012
Revised Manuscript: September 28, 2012
Manuscript Accepted: September 28, 2012
Published: October 23, 2012

Yudong Cui and Chao Zeng, "Optical bistability based on an analog of electromagnetically induced transparencyin plasmonic waveguide-coupled resonators," Appl. Opt. 51, 7482-7486 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef]
  2. H. Lu, X. Liu, Y. Gong, L. Wang, and D. Mao, “Multi-channel plasmonic waveguide filters with disk-shaped nanocavities,” Opt. Commun. 284, 2613–2616 (2011). [CrossRef]
  3. G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97, 057402 (2006). [CrossRef]
  4. R. Zia, J. A. Schuller, and M. L. Brongersma, “Plasmonics: The next chip-scale technology,” Mater. Today 9, 20–27(2006). [CrossRef]
  5. H. Lu, X. Liu, L. Wang, D. Mao, and Y. Gong, “Nanoplasmonic triple-wavelength demultiplexers in two-dimensional metallic waveguides,” Appl. Phys. B 103, 877–881 (2011). [CrossRef]
  6. G. Wang, H. Lu, X. Liu, D. Mao, and L. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express 19, 3513–3518 (2011). [CrossRef]
  7. H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities,” Opt. Express 19, 12885–12890 (2011). [CrossRef]
  8. H. Lu, X. Liu, D. Mao, Y. Gong, and G. Wang, “Analysis of nanoplasmonic wavelength demultiplexing based on MIM waveguides,” J. Opt. Soc. Am. B 28, 1616–1621 (2011). [CrossRef]
  9. F. Hu, H. Yi, and Z. Zhou, “Wavelength demultiplexing structure based on arrayed plasmonic slot cavities,” Opt. Lett. 36, 1500–1502 (2011). [CrossRef]
  10. G. Wang, H. Lu, and X. Liu, “Trapping of surface plasmon waves in graded grating waveguide system,” Appl. Phys. Lett. 101, 013111 (2012). [CrossRef]
  11. G. Wang, H. Lu, and X. Liu, “Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency,” Opt. Express 20, 20902–20907 (2012). [CrossRef]
  12. Y. Gong, L. Wang, X. Hu, X. Li, and X. Liu, “Broad-bandgap and low-sidelobe surface plasmon polariton reflector with Bragg-grating-based MIM waveguide,” Opt. Express 17, 13727–13736 (2009). [CrossRef]
  13. J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express 16, 413–425 (2008). [CrossRef]
  14. B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107 (2005). [CrossRef]
  15. Z. H. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007). [CrossRef]
  16. H. Lu, X. Liu, D. Mao, and G. Wang, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett. 37, 3780–3782 (2012).
  17. D. V. Oosten, M. Spasenovic, and L. Kuipers, “Nanohole chains for directional and localized surface plasmon excitation,” Nano Lett. 10, 286–290 (2010). [CrossRef]
  18. H. Lu, X. M. Liu, D. Mao, L. R. Wang, and Y. K. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express 18, 17922–17927 (2010). [CrossRef]
  19. Y. Gong, X. Liu, and L. Wang, “High channel-count plasmonic filter with the metal-insulator-metal Fibonacci-sequence gratings,” Opt. Lett. 35, 285–287 (2010). [CrossRef]
  20. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005). [CrossRef]
  21. M. He, J. Liu, Z. Gong, Y. Luo, X. Chen, and W. Lu, “Plasmonic splitter based on the metal-insulator-metal waveguide with periodic grooves,” Opt. Commun. 283, 1784–1787 (2010). [CrossRef]
  22. G. Wang and H. Lu, “Unidirectional excitation of surface plasmon polaritons in T-shaped waveguide with nanodisk resonator,” Opt. Commun. 285, 4190–4193 (2012). [CrossRef]
  23. H. Lu, X. Liu, L. Wang, Y. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express 19, 2910–2915 (2011). [CrossRef]
  24. Y. Gong, Z. Li, J. Fu, Y. Chen, G. Wang, H. Lu, L. Wang, and X. Liu, “Highly flexible all-optical metamaterial absorption switching assisted by Kerr-nonlinear effect,” Opt. Express 19, 10193–10198 (2011). [CrossRef]
  25. I. D. Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4, 382–387 (2010). [CrossRef]
  26. Y. Gong, X. Liu, H. Lu, L. Wang, and G. Wang, “Multiple responses of TPP-assisted near-perfect absorption in metal/Fibonacci quasiperiodic photonic crystal,” Opt. Express 19, 9759–9769 (2011). [CrossRef]
  27. Y. Gong, X. Liu, H. Lu, L. Wang, and G. Wang, “Perfect absorber supported by optical Tamm states in plasmonic waveguide,” Opt. Express 19, 18393–18398 (2011). [CrossRef]
  28. G. Wang, H. Lu, X. Liu, Y. Gong, and L. Wang, “Optical bistability in metal-insulator-metal plasmonic waveguide with nanodisk resonator containing Kerr nonlinear medium,” Appl. Opt. 50, 5287–5290 (2011). [CrossRef]
  29. Y. Shen and G. Wang, “Optical bistability in metal gap wave-guide nanocavities,” Opt. Express 16, 8421–8426 (2008). [CrossRef]
  30. H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Optical bistability in metal-insulator-metal plasmonic Bragg waveguides with Kerr nonlinear defects,” Appl. Opt. 50, 1307–1311 (2011). [CrossRef]
  31. H. Lu, X. Liu, D. Mao, Y. Gong, and G. Wang, “Induced transparency in nanoscale plasmonic resonator systems,” Opt. Lett. 36, 3233–3235 (2011). [CrossRef]
  32. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005). [CrossRef]
  33. R. W. Boyd and D. J. Gauthier, “Photonics: transparency on an optical chip,” Nature 441, 701–702 (2006). [CrossRef]
  34. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006). [CrossRef]
  35. X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009). [CrossRef]
  36. K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007). [CrossRef]
  37. H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85, 053803 (2012). [CrossRef]
  38. C. Min, P. Wang, C. Chen, Y. Deng, Y. Lu, H. Ming, T. Ning, Y. Zhou, and G. Yang, “All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials,” Opt. Lett. 33, 869–871 (2008). [CrossRef]
  39. A. Taflove and S. C. Hagness, Computational Electro-dynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech, 2000).
  40. J. Porto, L. Martín-Moreno, and F. García-Vidal, “Optical bistability in subwavelength slit apertures containing nonlinear media,” Phys. Rev. B 70, 081402 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (942 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited