OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 31 — Nov. 1, 2012
  • pp: 7499–7508

Spectral polarization of clear and hazy coastal skies

Raymond L. Lee, Jr. and Orlando R. Samudio  »View Author Affiliations

Applied Optics, Vol. 51, Issue 31, pp. 7499-7508 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (890 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Linear polarization of the clear daytime sky has often been measured as a spectrally integrated or quasi-monochromatic variable, but seldom as a spectral one. So we use a hyperspectral imaging system to measure skylight polarization at high spectral and angular resolutions for clear and hazy skies at our coastal site. The resulting polarization maps and spectra exhibit both commonalities and differences that seem unexplained by an existing polarized radiative transfer model. Comparing the measured polarization spectra with those predicted by aerosol single scattering suggests some basic verisimilitude tests for improving such models.

© 2012 Optical Society of America

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(290.1310) Scattering : Atmospheric scattering
(290.5855) Scattering : Scattering, polarization
(010.7295) Atmospheric and oceanic optics : Visibility and imaging

ToC Category:

Original Manuscript: July 2, 2012
Revised Manuscript: August 14, 2012
Manuscript Accepted: September 3, 2012
Published: October 23, 2012

Raymond L. Lee and Orlando R. Samudio, "Spectral polarization of clear and hazy coastal skies," Appl. Opt. 51, 7499-7508 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. F. Bohren and E. E. Clothiaux, Fundamentals of Atmospheric Radiation (Wiley-VCH, 2006), p. 345.
  2. G. Können, Polarized Light in Nature (Cambridge, 1985), pp. 11–12.
  3. D. Pye, Polarised Light in Science and Nature (Institute of Physics, 2001), pp. 117–118.
  4. A. Le Floch, G. Ropars, J. Enoch, and V. Lakshminarayanan, “The polarization sense in human vision,” Vis. Res. 50, 2048–2054 (2010). [CrossRef]
  5. D. Brewster, “On the polarisation of light by oblique transmission through all bodies, whether crystallized or uncrystallized,” Philos. Trans. R. Soc. Lond. 104, 219–230 (1814). [CrossRef]
  6. D. Brewster, “On the polarization of the atmosphere,” Philos. Mag. 31, 444–454 (1847).
  7. M. Richartz, “An improvement of Savart’s polariscope,” J. Opt. Soc. Am. 38, 623–625 (1948). [CrossRef]
  8. H. Neuberger, Introduction to Physical Meteorology(Pennsylvania State University, 1957), pp. 196–199.
  9. K. L. Coulson, Polarization and Intensity of Light in the Atmosphere (A. Deepak, 1988), pp. 533–546, 551–567.
  10. R. Walraven, “Polarization imagery,” Opt. Eng. 20, 14–18 (1981).
  11. J. A. North and M. J. Duggin, “Stokes vector imaging of the polarized sky-dome,” Appl. Opt. 36, 723–730 (1997). [CrossRef]
  12. R. L. Lee, “Digital imaging of clear-sky polarization,” Appl. Opt. 37, 1465–1476 (1998). [CrossRef]
  13. J. Gál, G. Horváth, V. B. Meyer-Rochow, and R. Wehner, “Polarization patterns of the summer sky and its neutral points measured by full-sky imaging polarimetry in Finnish Lapland north of the Arctic Circle,” Proc. R. Soc. Lond. A 457, 1385–1399 (2001).
  14. B. Suhai and G. Horváth, “How well does the Rayleigh model describe the E-vector distribution of skylight in clear and cloudy conditions? a full-sky polarimetric study,” J. Opt. Soc. Am. A 21, 1669–1676 (2004). [CrossRef]
  15. Y. Liu and K. J. Voss, “Polarized radiance distribution measurement of skylight. II. Experiment and data,” Appl. Opt. 36, 8753–8764 (1997). [CrossRef]
  16. M. V. Berry, M. R. Dennis, and R. L. Lee, “Polarization singularities in the clear sky,” New J. Phys. 6, 162 (2004). [CrossRef]
  17. N. J. Pust and J. A. Shaw, “Dual-field imaging polarimeter using liquid crystal variable retarders,” Appl. Opt. 45, 5470–5478 (2006). [CrossRef]
  18. T. W. Cronin, E. J. Warrant, and B. Greiner, “Celestial polarization patterns during twilight,” Appl. Opt. 45, 5582–5589 (2006). [CrossRef]
  19. N. J. Pust and J. A. Shaw, “Digital all-sky polarization imaging of partly cloudy skies,” Appl. Opt. 47, H190–H198 (2008). [CrossRef]
  20. T. Gehrels, “Wavelength dependence of the polarization of the sunlit sky,” J. Opt. Soc. Am. 52, 1164–1173 (1962). [CrossRef]
  21. D. J. Gambling and B. Billard, “A study of the polarization of skylight,” Aust. J. Phys. 20, 675–681 (1967). [CrossRef]
  22. K. L. Coulson, Polarization and Intensity of Light in the Atmosphere (A. Deepak, 1988), pp. 284–286, 291, 300, 305–307, 418, 421–422. Coulson’s visible-wavelength PL measured at Mauna Loa, Hawaii, have a fairly coarse spectral resolution of 100 nm.
  23. C. Bellver, “Luminance and polarization of the sky light at Seville (Spain) measured in white light,” Atmos. Environ. 22, 595–599 (1988). [CrossRef]
  24. I. Aben, F. Helderman, D. M. Stam, and P. Stammes, “Spectral fine-structure in the polarisation of skylight,” Geophys. Res. Lett. 26, 591–594 (1999). [CrossRef]
  25. E. Boesche, P. Stammes, T. Ruhtz, R. Preusker, and J. Fischer, “Effect of aerosol microphysical properties on polarization of skylight: sensitivity study and measurements,” Appl. Opt. 45, 8790–8805 (2006). [CrossRef]
  26. K. L. Coulson, “Effects of the El Chichon volcanic cloud in the stratosphere on the polarization of light from the sky,” Appl. Opt. 22, 1036–1050 (1983). [CrossRef]
  27. C. Bellver, “Study of luminance and polarimetry of the sky at Seville (Spain) from May 1982 to September 1984,” Atmos. Environ. 21, 1477–1481 (1987). [CrossRef]
  28. N. J. Pust, A. R. Dahlberg, M. J. Thomas, and J. A. Shaw, “Comparison of full-sky polarization and radiance observations to radiative transfer simulations which employ AERONET products,” Opt. Express 19, 18602–18613 (2011). [CrossRef]
  29. C. F. Bohren and E. E. Clothiaux, Fundamentals of Atmospheric Radiation (Wiley-VCH, 2006), pp. 349–354.
  30. K. L. Coulson, Polarization and Intensity of Light in the Atmosphere (A. Deepak, 1988), p. 554.
  31. C. F. Bohren and E. E. Clothiaux, Fundamentals of Atmospheric Radiation (Wiley-VCH, 2006), pp. 378–382. Here the authors show how linearly polarized light that illuminates particles that are large compared with the wavelength can be scattered as weakly circularly polarized light (i.e., circular polarization caused by multiple scattering).
  32. Pika II hyperspectral imaging system from Resonon, Inc., Bozeman, Montana, USA ( http://www.resonon.com ). The system consists of a digital camera that has an internal diffraction grating and is coupled to a rotation stage controlled by a precision stepper motor and laptop computer. In this pushbroom system, the laptop acquires 640 different skylight spectra at each rotation stage position (i.e., for each line of the resulting hyperspectral datacube).
  33. K. L. Coulson, Polarization and Intensity of Light in the Atmosphere (A. Deepak, 1988), p. 254.
  34. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983), p. 50.
  35. PR-650 spectroradiometer from Photo Research, Inc., Chatsworth, California, USA.
  36. K. L. Coulson, Polarization and Intensity of Light in the Atmosphere (A. Deepak, 1988), p. 582.
  37. R. Gerharz, “Self polarization in refractive systems,” Optik 43, 471–485 (1975).
  38. K. L. Coulson, Polarization and Intensity of Light in the Atmosphere (A. Deepak, 1988), p. 556. Coulson’s term for self-polarization is “parasitic polarization”.
  39. R. S. Loe and M. J. Duggin, “Hyperspectral imaging polarimeter design and calibration,” Proc. SPIE 4481, 195–205 (2002). [CrossRef]
  40. By design, some nonimaging spectroradiometers depolarize light between the lens and the instrument’s diffraction grating. For example, see PR-650 SpectraScan SpectraColorimeter Operating Manual, Software Version 1.10 (Photo Research, 1996), Section 3, p. 4.
  41. G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982), pp. 133–140.
  42. Similar techniques are used in R. J. Kubesh, “Computer display of chromaticity coordinates with the rainbow as an example,” Am. J. Phys. 60, 919–923 (1992). [CrossRef]
  43. Sun photometer data on τaer,λ for total aerosol extinction are acquired and archived by AERONET at http://aeronet.gsfc.nasa.gov . τaer,λ data in Table 2 are from the stations closest to USNA: Goddard Space Flight Center in Greenbelt, Maryland, and the Smithsonian Environmental Research Center in Edgewater, Maryland.
  44. Throughout this paper, we concentrate on the shapes of PLλ spectra rather than on identifying specific spectral features. However, the Pika II system does consistently detect such features, including the narrow PLλ local maxima near 761 nm caused by molecular oxygen absorption.
  45. Data from ϕrel∼270° (Fig. 4) are compared with that from ϕrel=90° (Fig. 1) because both Ψ and compass azimuth ϕ are nearly equal in the two scenes. Having equivalent ϕ at a given h0 reduces the PLλ effects of spatial changes in land and water spectral reflectances near our site.
  46. C. Emde, R. Buras, B. Mayer, and M. Blumthaler, “The impact of aerosols on polarized sky radiance: model development, validation, and applications,” Atmos. Chem. Phys. 10, 383–396 (2010). MYSTIC is an acronym formed from “Monte Carlo code for the phYSically correct Tracing of photons In Cloudy atmospheres”. [CrossRef]
  47. Aerosol concentrations and composition in the USNA region are analyzed in B. I. Magi, P. V. Hobbs, T. W. Kirchstetter, T. Novakov, D. A. Hegg, S. Gao, J. Redemann, and B. Schmid, “Aerosol properties and chemical apportionment of aerosol optical depth at locations off the U. S. east coast in July and August 2001,” J. Atmos. Sci. 62, 919–933 (2005). [CrossRef]
  48. N. J. Pust and J. A. Shaw, “Comparison of skylight polarization measurements and MODTRAN-P calculations,” J. Appl. Remote Sens. 5, 053529 (2011). MODTRAN is an acronym for “MODerate resolution atmospheric TRANsmission”. [CrossRef]
  49. J. F. de Haan, P. B. Bosma, and J. W. Hovenier, “The adding method for multiple scattering calculations of polarized light,” Astron. Astrophys. 183, 371–391 (1987).
  50. K. F. Evans and G. L. Stephens, “A new polarized atmospheric radiative transfer model,” J. Quant. Spectrosc. Radiat. Transfer 46, 413–423 (1991). [CrossRef]
  51. J. Lenoble, M. Herman, J. L. Deuzé, B. Lafrance, R. Santer, and D. Tanré, “A successive order of scattering code for solving the vector equation of transfer in the earth’s atmosphere with aerosols,” J. Quant. Spectrosc. Radiat. Transfer 107, 479–507 (2007). [CrossRef]
  52. B. Mayer, “libRadtran: library for radiative transfer,” http://www.libradtran.org .
  53. M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831–844 (1998). OPAC is an acronym for “Optical Properties of Aerosols and Clouds”. [CrossRef]
  54. PLλ for h=10° is included to allay any concerns that simulations for h=5° at any ϕrel might be corrupted by numerical instabilities arising from polRadTran’s assumption of a plane-parallel atmosphere. In fact, the model’s PLλ spectra change slowly and systematically for h>5°.
  55. J. V. Dave, “Extensive datasets of the diffuse radiation in realistic atmospheric models with aerosols and common absorbing gases,” Sol. Energy 21, 361–369 (1978). [CrossRef]
  56. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009). [CrossRef]
  57. C. F. Bohren and E. E. Clothiaux, Fundamentals of Atmospheric Radiation (Wiley-VCH, 2006), pp. 378–379. Single-scattering calculations confirm that for small aerosols and typical mixtures of clean maritime aerosol species, the spectral dispersion of spherical scatterers’ size parameters affects PLλ more than does dispersion of their collective n, k.
  58. N. J. Pust and J. A. Shaw, “Wavelength dependence of the degree of polarization in cloud-free skies: simulations of real environments,” Opt. Express 20, 15559–15568 (2012). [CrossRef]
  59. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45, 5453–5469 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited