OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 31 — Nov. 1, 2012
  • pp: 7509–7517

Simulation of atmospheric turbulence for optical systems with extended sources

Majid Safari and Steve Hranilovic  »View Author Affiliations

Applied Optics, Vol. 51, Issue 31, pp. 7509-7517 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (541 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, the method of random wave vectors for simulation of atmospheric turbulence is extended to 2 D × 2 D space to provide spatial degrees of freedom at both input and output planes. The modified technique can thus simultaneously simulate the turbulence-induced log-amplitude and phase distortions for optical systems with extended sources either implemented as a single large aperture or multiple apertures. The reliability of our simulation technique is validated in different conditions and its application is briefly investigated in a multibeam free-space optical communication scenario.

© 2012 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(060.2605) Fiber optics and optical communications : Free-space optical communication

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: June 27, 2012
Manuscript Accepted: September 7, 2012
Published: October 23, 2012

Majid Safari and Steve Hranilovic, "Simulation of atmospheric turbulence for optical systems with extended sources," Appl. Opt. 51, 7509-7517 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. I. Tatarskii, Wave Propagation in a Turbulent Medium (McGraw-Hill, 1961).
  2. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).
  3. D. L. Fried, “Optical heterodyne detection of an atmospherically distorted signal wave front,” Proc. IEEE 55, 57–77 (1967). [CrossRef]
  4. F. Roddier, “The effects of atmospheric turbulence in optical astronomy,” in Progress in Optics, E. Wolf, ed. (Pergamon, 1981), Vol. 19, pp. 281–376.
  5. J. H. Shapiro, “Imaging and optical communication through atmospheric turbulence,” in Laser Beam Propagation in the Atmosphere, J. W. Strohbehn, ed. (Springer-Verlag, 1978), Chap. 6.
  6. M. A. Vorontsov, G. W. Carhart, D. V. Pruidze, J. C. Ricklin, and D. G. Voelz, “Image quality criteria for an adaptive imaging system based on statistical analysis of the speckle field,” J. Opt. Soc. Am. A 13, 1456–1466 (1996). [CrossRef]
  7. X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293–1300 (2002). [CrossRef]
  8. M. Safari and M. Uysal, “Relay-assisted free-space optical communication,” IEEE Trans. Wireless Commun. 7, 5441–5449 (2008). [CrossRef]
  9. N. Roddier, “Atmospheric wave-front simulation using Zernike polynomials,” Opt. Eng. 29, 1174–1180 (1990). [CrossRef]
  10. R. G. Lane, A. Glindemann, and J. C. Dainty, “Simulation of a Kolmogorov phase screen,” Waves Random Media 2, 209–224 (1992). [CrossRef]
  11. M. C. Roggermann, B. M. Welsh, D. Montera, and T. A. Rhoadarmer, “Method for simulating atmospheric turbulence phase effects for multiple time slices and anisoplanatic conditions,” Appl. Opt. 34, 4037–4051 (1995). [CrossRef]
  12. H. Jakobsson, “Simulations of time series of atmospherically distorted wave fronts,” Appl. Opt. 35, 1561–1565(1996). [CrossRef]
  13. R. C. Cannon, “Optimal bases for wave-front simulation and reconstruction on annular apertures,” J. Opt. Soc. Am. A 13, 862–867 (1996). [CrossRef]
  14. R. Frehlich, “Simulation of laser propagation in a turbulent atmosphere,” Appl. Opt. 39, 393–397 (2000). [CrossRef]
  15. D. Kouznetsov, V. V. Voitsekhovich, and R. Ortega-Martinez, “Simulation of turbulence-induced phase and log-amplitude distortions,” Appl. Opt. 36, 464–469 (1997). [CrossRef]
  16. J. A. Anguita, M. A. Neifeld, and B. V. Vasic, “Spatial correlation and irradiance statistics in a multiple-beam terrestrial free-space optical communication link,” Appl. Opt. 46, 6561–6571 (2007). [CrossRef]
  17. M. Safari and S. Hranilovic, “Diversity gain for near-field MISO atmospheric optical communications,” in Proceedings of IEEE International Conference on Communications (IEEE, 2012), p. 3167.
  18. P. J. Titterton, “Scintillation and transmitter-aperture averaging over vertical paths,” J. Opt. Soc. Am. 63, 439–444 (1973). [CrossRef]
  19. J. R. Kerr and R. Eiss, “Transmitter-size and focus effects on scintillations,” J. Opt. Soc. Am. 62, 682–684 (1972). [CrossRef]
  20. B. Erkmen, “Performance analysis for near-field optical communications,” Master’s thesis (MIT, 2002).
  21. O. Korotkova, L. C. Andrews, and R. L. Phillips, “Model for a partially coherent Gaussian beam in atmospheric turbulence with application in Lasercom,” Opt. Eng. 43, 330–341 (2004). [CrossRef]
  22. J. H. Shapiro, “Near-field turbulence effects on quantum-key distribution,” Phys. Rev. A 67, 022309 (2003). [CrossRef]
  23. M. Safari and M. Uysal, “Relay-assisted quantum-key distribution over long atmospheric channels,” J. Lightwave Technol. 27, 4508–4515 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited