OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 31 — Nov. 1, 2012
  • pp: 7576–7580

Intensity fluctuation spectra of dynamic laser speckle patterns acquired by a full-field temporal modulation method

Dake Wang, Adam Moyer, and Matt Henderson  »View Author Affiliations


Applied Optics, Vol. 51, Issue 31, pp. 7576-7580 (2012)
http://dx.doi.org/10.1364/AO.51.007576


View Full Text Article

Enhanced HTML    Acrobat PDF (385 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method for obtaining the intensity fluctuation spectra of dynamic laser speckle patterns is introduced, which is based on the temporal modulation of the illumination and the subsequent integration of the intensity signals. This approach does not rely on the fast sampling rate to meet the Nyquist criterion, making it applicable for full-field imaging applications. The intensity fluctuation spectra created by the in-plane motion of a random phase object was investigated by using both a single-channel detector and a multichannel sensor. The power spectra obtained by using the full-field temporal modulation method were found to agree with the homodyne Doppler spectra obtained by using the method of autocorrelation and Fourier transform.

© 2012 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(110.6150) Imaging systems : Speckle imaging
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing
(120.6150) Instrumentation, measurement, and metrology : Speckle imaging

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: August 16, 2012
Manuscript Accepted: September 30, 2012
Published: October 25, 2012

Virtual Issues
Vol. 7, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Dake Wang, Adam Moyer, and Matt Henderson, "Intensity fluctuation spectra of dynamic laser speckle patterns acquired by a full-field temporal modulation method," Appl. Opt. 51, 7576-7580 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-31-7576


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. K. Dunn, A. Devor, H. Andermann, M. Andermann, M. Moskowitz, A. Dale, and D. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28, 28–30 (2003). [CrossRef]
  2. P. C. Li, S. L. Ni, L. Zhang, S. Q. Zeng, and Q. M. Luo, “Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging,” Opt. Lett. 31, 1824–1826 (2006). [CrossRef]
  3. B. Weber, C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold, and A. Buck, “Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex,” Eur. J. Neurosci. 20, 2664–2670 (2004). [CrossRef]
  4. T. Durduran, M. G. Burnett, C. Zhou, G. Yu, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24, 518–525 (2004). [CrossRef]
  5. J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22, R35–R66 (2001). [CrossRef]
  6. A. C. Völker, P. Zakharov, B. Weber, F. Buck, and F. Scheffold, “Laser speckle imaging with an active noise reduction scheme,” Opt. Express 13, 9782–9787 (2005). [CrossRef]
  7. P. Zakharov, A. C. Völker, F. Buck, B. Weber, and F. Scheffold, “Quantitative modeling of laser speckle imaging,” Opt. Lett. 31, 3465–3467 (2006). [CrossRef]
  8. D. D. Duncan and S. J. Kirkpatrick, “Can laser speckle flowmetry be made a quantitative tool?” J. Opt. Soc. Am. A 25, 2088–2094 (2008). [CrossRef]
  9. M. Draijer, E. Hondebrink, T. G. van Leeuwen, and W. Steenbergen, “Twente optical perfusion camera: system overview and performance for video rate laser Doppler perfusion imaging,” Opt. Express 17, 3211–3225 (2009). [CrossRef]
  10. J. H. Park, J. Platisa, J. V. Verhagen, S. H. Gautam, A. Osman, D. Kim, V. A. Pieribone, and E. Culurciello, “Head-mountable high speed camera for optical neural recording,” J. Neurosci. Methods 201, 290–295 (2011). [CrossRef]
  11. M. Simonutti, M. Paques, J. A. Sahel, M. Gross, B. Samson, C. Magnain, and M. Atlan, “Holographic laser Doppler ophthalmoscopy,” Opt. Lett. 35, 1941–1943 (2010). [CrossRef]
  12. M. Atlan, M. Gross, B. C. Forget, T. Vitalis, A. Rancillac, and A. K. Dunn, “Frequency-domain wide-field laser Doppler in vivo imaging,” Opt. Lett. 31, 2762–2764 (2006). [CrossRef]
  13. A. C. Mitchell, J. E. Wall, J. G. Murray, and C. G. Morgan, “Direct modulation of the effective sensitivity of a CCD detector: a new approach to time-resolved fluorescence imaging,” J. Microsc. 206, 225–232 (2002). [CrossRef]
  14. C. G. Morgan, Y. Hua, A. C. Mitchell, J. G. Murray, and A. D. Boardman, “A compact frequency domain fluorometer with a directly modulated deuterium light source,” Rev. Sci. Instrum. 67, 41–47 (1996). [CrossRef]
  15. J. R. Lakowicz and K. W. Berndt, “Lifetime selective imaging using an RF phase-sensitive camera,” Rev. Sci. Instrum. 62, 1727–1734 (1991). [CrossRef]
  16. P. Herman, B. P. Maliwal, H. J. Lin, and J. R. Lakowicz, “Frequency domain fluorescence microscopy with the LED as a light source,” J. Microsc. 203, 176–181 (2001). [CrossRef]
  17. D. D. Duncan, S. J. Kirkpatrick, and R. K. Wang, “Statistics of local speckle contrast,” J. Opt. Soc. Am. A 25, 9–15(2008). [CrossRef]
  18. T. Yoshimura, K. Nakagawa, and N. Wakabayashi, “Rotational and boiling motion of speckles in a two-lens imaging system,” J. Opt. Soc. Am. A 3, 1018–1022 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited