OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 31 — Nov. 1, 2012
  • pp: 7581–7585

Beam wander of electromagnetic Gaussian–Schell model beams propagating in atmospheric turbulence

Song Yu, Zhixiao Chen, Tianyi Wang, Guohua Wu, Hong Guo, and Wanyi Gu  »View Author Affiliations


Applied Optics, Vol. 51, Issue 31, pp. 7581-7585 (2012)
http://dx.doi.org/10.1364/AO.51.007581


View Full Text Article

Enhanced HTML    Acrobat PDF (348 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The general model of beam wander for a coherent Gaussian beam propagating through atmospheric turbulence is extended to the case of a partially polarized electromagnetic Gaussian–Schell model (EGSM) beam. The expression of the beam wander is obtained by characterizing the EGSM beam with the effective beam parameters. The effects of initial spatially coherent lengths, degree of polarization, and phase curvature are examined in detail. A condition is derived under which beams with different spatial coherence and degrees of polarization will generate the same beam wander.

© 2012 Optical Society of America

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(010.3310) Atmospheric and oceanic optics : Laser beam transmission

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: May 29, 2012
Revised Manuscript: August 16, 2012
Manuscript Accepted: September 26, 2012
Published: October 25, 2012

Citation
Song Yu, Zhixiao Chen, Tianyi Wang, Guohua Wu, Hong Guo, and Wanyi Gu, "Beam wander of electromagnetic Gaussian–Schell model beams propagating in atmospheric turbulence," Appl. Opt. 51, 7581-7585 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-31-7581


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. C. Ricklin and F. M. Davidson, “Atmospheric optical communication with a Gaussian Schell beam,” J. Opt. Soc. Am. A 20, 856–866 (2003). [CrossRef]
  2. O. Korotkova, L. C. Andrews, and R. L. Phillips, “Speckle propagation through atmosphere: effects of a random phase screen at the source,” Proc. SPIE 4821, 98–109 (2002). [CrossRef]
  3. O. Korotkova, “Scintillation index of a stochastic electromagnetic beam propagating in random media,” Opt. Commun. 281, 2342–2348 (2008). [CrossRef]
  4. C. Arpali, S. A. Arpali, Y. Baykal, and H. T. Eyyuboglu, “Intensity fluctuations of partially coherent laser beam arrays in weak atmospheric turbulence,” Appl. Phys. B 103, 237–244 (2011). [CrossRef]
  5. Y. Gu and G. Gbur, “Reduction of turbulence-induced scintillation by nonuniformly polarized beam arrays,” Opt. Lett. 37, 1553–1555 (2012). [CrossRef]
  6. F. Dios, J. A. Rubio, A. Rodriguez, and A. Comeron, “Scintillation and beam-wander analysis in an optical ground station-satellite uplink,” Appl. Opt. 43, 3866–3873 (2004). [CrossRef]
  7. L. C. Andrews, R. L. Phillips, R. J. Sasiela, and R. R. Parenti, “Strehl ratio and scintillation theory for uplink Gaussian-beam waves: beam wander effects,” Opt. Eng. 45, 076001 (2006). [CrossRef]
  8. D. H. Tofsted, “Outer-scale effects in beam-wander and angle-of-arrival variances,” Appl. Opt. 31, 5865–5870(1992). [CrossRef]
  9. H. T. Eyyuboglu and C. Z. Cil, “Beam wander of dark hollow, flat-topped and annular beams,” Appl. Phys. B 93, 595–604 (2008). [CrossRef]
  10. C. Z. Cil, H. T. Eyyuboglu, Y. Baykal, and Y. Cai, “Beam wander characteristics of cos and cosh-Gaussian beams,” Appl. Phys. B 95, 763–771 (2009). [CrossRef]
  11. G. P. Berman, A. A. Chumak, and V. N. Gorshkov, “Beam wandering in the atmosphere: the effect of partial coherence,” Phys. Rev. E 76, 056606 (2007). [CrossRef]
  12. X. Xiao and D. G. Voelz, “Beam wander analysis for focused partially coherent beams propagating in turbulence,” Opt. Eng. 51, 026001 (2012). [CrossRef]
  13. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 2005).
  14. G. Wu, B. Luo, S. Yu, A. Dang, T. Zhao, and H. Guo, “Effects of coherence and polarization on the beam spreading and direction through atmospheric turbulence,” Opt. Commun. 284, 4275–4278 (2011). [CrossRef]
  15. T. Shirai, A. Dogariu, and E. Wolf, “Directionality of Gaussian Schell-model beams propagating in atmospheric turbulence,” Opt. Lett. 28, 610–612 (2003). [CrossRef]
  16. H. Roychowadhury, S. A. Ponomarenko, and E. Wolf, “Change in the polarization of partially coherent electromagnetic beams propagating through the turbulent atmosphere,” J. Mod. Opt. 52, 1611–1618 (2005). [CrossRef]
  17. G. Wu, Q. Lou, J. Zhou, H. Guo, H. Zhao, and Z. Yuan, “Beam conditions for radiation generated by an electromagnetic J0-correlated Schell-model source,” Opt. Lett. 33, 2677–2679(2008). [CrossRef]
  18. J. C. Ricklin and F. M. Davidson, “Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication,” J. Opt. Soc. Am. A 19, 1794–1802 (2002). [CrossRef]
  19. G. Wu, B. Luo, S. Yu, A. Dang, and H. Guo, “The propagation of electromagnetic Gaussian-Schell model beams through atmospheric turbulence in a slanted path,” J. Opt. 13, 035706 (2011). [CrossRef]
  20. J. Pu, O. Korotkova, and E. Wolf, “Polarization-induced spectral changes on propagation of stochastic electromagnetic beams,” Phys. Rev. E 75, 056610 (2007). [CrossRef]
  21. D. K. Borah and D. G. Voelz, “Spatially partially coherent beam parameter optimization for free space optical communications,” Opt. Express 18, 20746–20758 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited