OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 31 — Nov. 1, 2012
  • pp: 7616–7625

3D shape reconstruction of large specular surface

Hongwei Zhang, Shujian Han, Shugui Liu, Shaohui Li, Lishuan Ji, and Xiaojie Zhang  »View Author Affiliations


Applied Optics, Vol. 51, Issue 31, pp. 7616-7625 (2012)
http://dx.doi.org/10.1364/AO.51.007616


View Full Text Article

Enhanced HTML    Acrobat PDF (1214 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel three-dimensional (3D) reconstruction method based on fringe reflection technique for shape measurement of large specular surfaces is presented in this paper, which effectively integrates path integration technique with zonal wavefront reconstruction algorithm. The height information of specular surface obtained from cross-path integration can then be used as the initial value in a zonal wavefront reconstruction algorithm. This method not only has the advantages of global integration, but also enables user-friendly, high-speed operation. A specific iterative algorithm is adopted to improve the antinoise capability of the measuring system, which accelerates the rate of convergence significantly and even improves the accuracy of the reconstructed 3D surface. Moreover, the proper use of boundary contour extraction of the acquired images reduces the computational load of 3D reconstruction dramatically and hence achieves high reconstruction accuracy and enhances the surface integrity at the boundary. An ultraprecision, diamond-turned planar mirror with diameter of 150 mm has been employed to implement the system calibration. The reconstruction results of simulated and actual hyperbolic surfaces and the gauge blocks identify the validity of this new method. It is demonstrated that the measurement error is about 50 μm with reconstruction points of 150×560 pixels of gauge blocks.

© 2012 Optical Society of America

OCIS Codes
(100.0100) Image processing : Image processing
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.4630) Instrumentation, measurement, and metrology : Optical inspection
(120.5700) Instrumentation, measurement, and metrology : Reflection
(120.6650) Instrumentation, measurement, and metrology : Surface measurements, figure
(150.0150) Machine vision : Machine vision

ToC Category:
Image Processing

History
Original Manuscript: June 22, 2012
Revised Manuscript: September 6, 2012
Manuscript Accepted: October 3, 2012
Published: October 26, 2012

Citation
Hongwei Zhang, Shujian Han, Shugui Liu, Shaohui Li, Lishuan Ji, and Xiaojie Zhang, "3D shape reconstruction of large specular surface," Appl. Opt. 51, 7616-7625 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-31-7616

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited