OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 31 — Nov. 1, 2012
  • pp: 7643–7647

Nanocomposite polyacrylamide based open cavity fiber Fabry–Perot humidity sensor

Jun Yao, Tao Zhu, De-Wen Duan, and Ming Deng  »View Author Affiliations

Applied Optics, Vol. 51, Issue 31, pp. 7643-7647 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (390 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A humidity sensor with a low temperature sensitivity is proposed and demonstrated by coating a nanocomposite hygrometer polyacrylamide in an open interferometric cavity of a fiber Fabry–Perot interferometer. In this paper the Fabry–Perot structure is formed by splicing one short section of single mode fiber between two sections of single mode fiber with a larger offset fusing method. Experimental results show that relative humidity (RH) sensitivity of the sensor is 0.1nm/(1%RH) in the range of 38% to 78% RH and 5.868nm/(1%RH) in the range of 88% to 98% RH, respectively.

© 2012 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.3180) Instrumentation, measurement, and metrology : Interferometry

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: July 11, 2012
Revised Manuscript: September 26, 2012
Manuscript Accepted: October 1, 2012
Published: October 29, 2012

Jun Yao, Tao Zhu, De-Wen Duan, and Ming Deng, "Nanocomposite polyacrylamide based open cavity fiber Fabry–Perot humidity sensor," Appl. Opt. 51, 7643-7647 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Mathew, Y. Semenova, G. Rajan, and G. Farrell, “Humidity sensor based on photonic crystal fibre interferometer,” Electron. Lett. 46, 1341–1342 (2010). [CrossRef]
  2. Y. Wu, T. H. Zhang, Y. J. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sens. Actuators B 155, 258–263 (2011). [CrossRef]
  3. P. Wang, F. X. Gu, L. Zhang, and L. M. Tong, “Polymer microfiber rings for high-sensitivity optical humidity sensing,” Appl. Opt. 50, G7–G10 (2011). [CrossRef]
  4. Z. Qi, I. Honma, and H. Zhou, “Humidity sensor based on localized surface plasmon resonance of multilayer thin films of gold nanoparticles linked with myoglobin,” Opt. Lett. 31, 1854–1856 (2006). [CrossRef]
  5. C. R. Zamarreno, M. Hernaez, I. D. Villar, I. R. Matias, and F. J. Arregui, “Tunable humidity sensor based on ITO-coated optical fiber,” Sens. Actuators B 146, 414–417 (2010). [CrossRef]
  6. T. Venugopalan, T. Sun, and K. T. V. Grattan, “Long period grating–based humidity sensor for potential structural health monitoring,” Sens. Actuators A 148, 57–62 (2008). [CrossRef]
  7. I. D. Villar, C. R. Zamarreno, M. Hernaez, F. J. Arregui, and I. R. Matias, “Resonances in coated long period fiber gratings and cladding removed multimode optical fibers: a comparative study,” Opt. Express 18, 20183–20189 (2010). [CrossRef]
  8. K. M. Tan, C. M. Tay, S. C. Tjin, C. C. Chana, and H. Rahardjo, “High relative humidity measurements using gelatin coated long-period grating sensors,” Sens. Actuators B 110, 335–341 (2005). [CrossRef]
  9. Y. P. Miao, B. Liu, H. Zhang, Y. Li, H. B. Zhou, H. Sun, W. H. Zhang, and Q. D. Zhao, “Relative humidity sensor based on tilted fiber Bragg grating with polyvinyl alcohol coating,” IEEE Photon. Technol. Lett. 21, 441–443 (2009). [CrossRef]
  10. B. B. Gu, M. J. Yin, A. P. Zhang, J. W. Qian, and S. L. He, “Optical fiber relative humidity sensor based on FBG incorporated thin-core fiber modal interferometer,” Opt. Express 19, 4140–4146 (2011). [CrossRef]
  11. S. Akita, H. Sasaki, K. Watanabe, and A. Seki, “A humidity sensor based on a hetero-core optical fiber,” Sens. Actuators B 147, 385–391 (2010). [CrossRef]
  12. Q. Wu, Y. Semenova, J. Mathew, P. F. Wang, and G. Farrell, “Humidity sensor based on a single-mode hetero-core fiber structure,” Opt. Lett. 36, 1752–1754 (2011). [CrossRef]
  13. J. M. Corres, F. J. Arregui, and I. R. Matias, “Design of humidity sensors based on tapered optical fibers,” J. Lightwave Technol. 24, 4329–4336 (2006). [CrossRef]
  14. L. Zhang, F. X. Gu, J. Y. Lou, X. F. Yin, and L. M. Tong, “Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film,” Opt. Express 16, 13349–13353 (2008). [CrossRef]
  15. L. H. Chen, T. Li, C. C. Chan, R. Menon, P. Balamurali, M. Shaillendere, B. Neu, X. M. Ang, P. Zu, W. C. Wong, and K. C. Leong, “Chitosan based fiber-optic Fabry–Perot humidity sensor,” Sens. Actuators B 169, 167–172 (2012). [CrossRef]
  16. D. W. Duan, Y. J. Rao, L. C. Xu, T. Zhu, D. Wu, and J. Yao, “In-fiber Mach-Zehnder interferometer formed by large lateral offset splicing for gases refractive index measurement with high sensitivity,” Sens. Actuators B 160, 1198–1202 (2011). [CrossRef]
  17. G. Z. Xiao, Z. Adnet, Z. Y. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry–Perot interferometer sensor,” Sens. Actuators A 118, 177–182 (2005). [CrossRef]
  18. F. X. Gu, L. Zhang, X. F. Yin, and L. M. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8, 2757–2761 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited