OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 31 — Nov. 1, 2012
  • pp: 7648–7661

Optimization of two-glass monocentric lenses for compact panoramic imagers: general aberration analysis and specific designs

Igor Stamenov, Ilya P. Agurok, and Joseph E. Ford  »View Author Affiliations

Applied Optics, Vol. 51, Issue 31, pp. 7648-7661 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1749 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Monocentric lenses have recently changed from primarily a historic curiosity to a potential solution for panoramic high-resolution imagers, where the spherical image surface is directly detected by curved image sensors or optically transferred onto multiple conventional flat focal planes. We compare imaging and waveguide-based transfer of the spherical image surface formed by the monocentric lens onto planar image sensors, showing that both approaches can make the system input aperture and resolution substantially independent of the input angle. We present aberration analysis that demonstrates that wide-field monocentric lenses can be focused by purely axial translation and describe a systematic design process to identify the best designs for two-glass symmetric monocentric lenses. Finally, we use this approach to design an F/1.7, 12 mm focal length imager with an up to 160° field of view and show that it compares favorably in size and performance to conventional wide-angle imagers.

© 2012 Optical Society of America

OCIS Codes
(080.3620) Geometric optics : Lens system design
(110.0110) Imaging systems : Imaging systems
(220.3620) Optical design and fabrication : Lens system design
(220.4830) Optical design and fabrication : Systems design

ToC Category:
Optical Design and Fabrication

Original Manuscript: August 9, 2012
Revised Manuscript: October 5, 2012
Manuscript Accepted: October 6, 2012
Published: October 29, 2012

Virtual Issues
Vol. 7, Iss. 12 Virtual Journal for Biomedical Optics

Igor Stamenov, Ilya P. Agurok, and Joseph E. Ford, "Optimization of two-glass monocentric lenses for compact panoramic imagers: general aberration analysis and specific designs," Appl. Opt. 51, 7648-7661 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Smith, Modern Lens Design, 2nd ed. (McGraw Hill, 2005).
  2. T. Yamashita, R. Funatsu, T. Yanagi, K. Mitani, Y. Nojiri, and T. Yoshida, “A camera system using three 33-megapixel CMOS image sensors for UHDTV2,” SMPTE J. 120, 24–31 (2011). [CrossRef]
  3. R. Kingslake, A History of the Photographic Lens (Academic, 1989), pp. 49–67.
  4. G. Krishnan and S. K. Nayar, “Towards a true spherical camera,” Proc. SPIE 7240, 724002 (2009). [CrossRef]
  5. J. E. Ford, and E. Tremblay, “Extreme form factor imagers,” in Imaging Systems, OSA Technical Digest (CD) (2010), paper IMC2.
  6. D. J. Brady and N. Hagen, “Multiscale lens design,” Opt. Express 17, 10659–10674 (2009). [CrossRef]
  7. O. Cossairt, D. Miau, and S. K. Nayar, “Gigapixel computational imaging,” in IEEE International Conference on Computational Photography (IEEE, 2011), pp. 1–8.
  8. H. Son, D. L. Marks, E. J. Tremblay, J. Ford, J. Hahn, R. Stack, A. Johnson, P. McLaughlin, J. Shaw, J. Kim, and D. J. Brady, “A Multiscale, wide field, gigapixel camera,” in Imaging Systems Applications, OSA Technical Digest (2011), paper JTuE2.
  9. D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012). [CrossRef]
  10. E. J. Tremblay, D. L. Marks, D. J. Brady, and J. E. Ford, “Design and scaling of monocentric multiscale imagers,” Appl. Opt. 51, 4691–4702 (2012). [CrossRef]
  11. P. Milojkovic and J. Mait, “Space-bandwidth scaling for wide field-of-view imaging,” Appl. Opt. 51, A36–A47 (2012). [CrossRef]
  12. J. A. Waidelich, “Spherical lens imaging device,” U.S. patent 3,166,623 (19January1965).
  13. J. J. Hancock, The design, fabrication, and calibration of a fiber filter spectrometer, Ph.D. Thesis (University of Arizona, 2012); see also product datasheets posted on Schott Fiber Optics website, “Schott Fiber Optic Faceplates” (faceplates_us_march_2011.pdf) and “Schott Fused Imaging Fiber Tapers” (Tapers-US-October_2011.pdf).
  14. R. Drougard, “Optical transfer properties of fiber bundles,” J. Opt. Soc. Am. 54, 907–914 (1964). [CrossRef]
  15. J.-H. Han, J. Lee, and J. U. Kang, “Pixelation effect removal from fiber bundle probe based optical coherence tomography imaging,” Opt. Express 18, 7427–7439 (2010). [CrossRef]
  16. Y. F. Li and J. W. Y. Lit, “Transmission properties of a multimode optical-fiber taper,” J. Opt. Soc. Am. A 2, 462–468 (1985). [CrossRef]
  17. J. M. Cobb, D. Kessler, and J. Agostinelli, “Optical design of a monocentric autostereoscopic immersive display,” Proc. SPIE 4832, 80–90 (2002). [CrossRef]
  18. J. M. Cobb, D. Kessler, and J. E. Roddy, “Autostereoscopic optical apparatus,” U.S. Patent 6,871,956 (29March2005).
  19. Hoya glass catalog, http://www.hoya-opticalworld.com/english/ (20June2012).
  20. D. Marks, E. Tremblay, J. Ford, and D. Brady, “Multicamera aperture scale in monocentric gigapixel cameras,” Appl. Opt. 50, 5824–5833 (2011). [CrossRef]
  21. M. Born and E. Wolf, Principles of Optics, 7th expanded ed. (Cambridge University, 1999).
  22. V. Churilovskiy, The Theory of Chromatism and Third Order Aberrations (Mashinostroenie, 1968).
  23. J. Sasian, “Theory of sixth-order wave aberrations,” Appl. Opt. 49, D69–D95 (2010). [CrossRef]
  24. R. Kingslake and R. B. Johnson, Lens Design Fundamentals, 2nd ed. (SPIE, 2010).
  25. G. G. Slyusarev, Aberrations and Optical Design Theory, 2nd ed. (Adam Hilger, 1984).
  26. J. L. Rayces and M. Rosete-Aguilar, “Selection of glasses for achromatic doublets with reduced secondary spectrum. I. Tolerances conditions for secondary spectrum, spherochromatism, and fifth-order spherical aberrations,” Appl. Opt. 40, 5663–5676 (2001). [CrossRef]
  27. I. Gardner, “Application of algebraic aberration equations to optical design,” Scientific Papers of the Bureau of Standards No. 550 (1927).
  28. H. A. Buchdahl, Optical Aberrations Coefficients (Dover, 1968).
  29. Schott glass catalog, http://www.us.schott.com/advanced_optics/english/download/schott_optical_glass_catalogue_excel_june_2012.xls .Schott.
  30. Ohara glass catalog, http://www.oharacorp.com/xls/glass-data-2012.xls .
  31. Sumita glass catalog, http://www.sumita-opt.co.jp/ja/goods/data/glassdata.xls .
  32. Hoya glass catalog, http://www.hoyaoptics.com/pdf/MasterOpticalGlass.xls .
  33. M. M. Rusinov, Handbook of Computational Optics(Mashinostroenie, 1984), Chap. 23.
  34. I. Agurok, “Method of ‘truss’ approximation in wavefront testing,” Proc. SPIE 3782, 337–348 (1999). [CrossRef]
  35. http://psilab.ucsd.edu/VirtualStopFamily1.zip .
  36. http://psilab.ucsd.edu/PhysicalApertureStopFamily3.zip .
  37. J. Kulmer and M. Bauer, “Fish-eye lens designs and their relative performance,” Proc. SPIE 4093, 360–369 (2000). [CrossRef]
  38. M. Horimoto, “Fish eye lens system,” U.S. Patent 4,412,726(1November1983).
  39. H. Gross, F. Blechinger, and B. Achtner, Survey of Optical Instruments, Vol. 4 of Handbook of Optical Systems (Wiley, 2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited