OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 32 — Nov. 10, 2012
  • pp: 7784–7787

Proposal for tunable dual channel transmitter and mechano-optical switch based on photonic crystal

Yousef Vahabzadeh and Morteza Noshad  »View Author Affiliations

Applied Optics, Vol. 51, Issue 32, pp. 7784-7787 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (501 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this article we propose a novel mechano-optical switch and dual channel transmitter based on photonic crystal. The device consists of two waveguides and an elliptical cavity in a square lattice structure. Two optical signals at separate wavelengths are inserted in the input waveguide. The elliptical cavity can be rotated using a mechanical force, which results in the control of transmission efficiency at each of the wavelengths. In addition, rotation of the cavity can be considered as a switching action, which changes on–off states of the output signals.

© 2012 Optical Society of America

OCIS Codes
(070.2615) Fourier optics and signal processing : Frequency filtering
(140.3945) Lasers and laser optics : Microcavities
(130.4815) Integrated optics : Optical switching devices
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Optical Devices

Original Manuscript: August 7, 2012
Revised Manuscript: September 27, 2012
Manuscript Accepted: October 3, 2012
Published: November 8, 2012

Yousef Vahabzadeh and Morteza Noshad, "Proposal for tunable dual channel transmitter and mechano-optical switch based on photonic crystal," Appl. Opt. 51, 7784-7787 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062(1987). [CrossRef]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef]
  3. M. Qiu, M. Mulot, M. Swillo, S. Anand, B. Jaskorzynak, A. Karlsson, M. Kamp, and A. Forchel, “Photonic crystal optical filter based on contra-directional waveguide coupling,” Appl. Phys. Lett. 83, 5121–5123 (2003). [CrossRef]
  4. L. Fekete, F. Kadlec, P. Kuzel, and H. Nemec, “Ultrafast optoterahertz photonic crystal modulator,” Opt. Lett. 32, 680–682 (2007). [CrossRef]
  5. L. Gu, W. Jiang, X. Chen, L. Wang, and R. T. Chen, “High speed silicon photonic crystal waveguide modulator for low voltage operation,” Appl. Phys. Lett. 90, 071105 (2007). [CrossRef]
  6. Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80 micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87, 221105 (2005). [CrossRef]
  7. M. Noshad, A. Abbasi, R. Ranjbar, and R. Kheradmand, “Novel all-optical logic gates based on photonic crystal structure,” J. Phys. Conf. Ser. 350, 012007 (2012). [CrossRef]
  8. S. Y. Lin, E. Chow, J. Bur, S. G. Johnson, and J. D. Joannopoulos, “Low-loss, wide-angle Y splitter at 1.6 m wavelengths built with a two-dimensional photonic crystal,” Opt. Lett. 27, 1400–1402 (2002). [CrossRef]
  9. H. Takeda and K. Yoshino, “Tunable light propagation in Y-shaped waveguides in two-dimensional photonic crystals utilizing liquid crystals as linear defects,” Phys. Rev. B 67, 073106 (2003). [CrossRef]
  10. K. Inoue, Y. Sugimoto, N. Ikeda, Y. Tanaka, K. Asakawa, H. Sasaki, and K. Ishida, “Ultra-small photonic-crystal-waveguide-based Y-splitters useful in the near-infrared wavelength region,” Jpn. J. Appl. Phys. 43, 446–448 (2004).
  11. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096 (1998). [CrossRef]
  12. J. Amet, F. Baida, G. Burr, and M. P. Bernal, “The superprism effect in lithium niobate photonic crystals for ultra-fast, ultra-compact electro-optical switching,” Photon. Nanostr. Fundam. Appl. 6, 47–59 (2008). [CrossRef]
  13. S. Diziain, J. Amet, F. I. Baida, and M. P. Bernal, “Optical far-field and near-field observations of the strong angular dispersion in a lithium niobate photonic crystal superprism designed for double (passive and active) demultiplexer applications,” Appl. Phys. Lett. 93, 261103 (2008). [CrossRef]
  14. C. Chao, H. Li, X. Li, K. Xu, J. Wu, and J. Lin, “Band pass filters based on phase-shifted photonic crystal waveguide gratings,” Opt. Express 15, 11278–11284 (2007). [CrossRef]
  15. L. Scolari, C. B. Olausson, J. Weirich, D. Turchinovich, T. T. Alkeskjold, A. Bjarklev, and L. Eskildsen, “Tunable polarisation-maintaining filter based on liquid crystal photonic bandgap fibre,” Electron. Lett. 44, 1189–1190 (2008). [CrossRef]
  16. T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, and A. W. Domanski, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quantum Electron. 39, 1021–1032 (2007). [CrossRef]
  17. L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Tunable gaussian filter based on tapered liquid crystal photonic bandgap fibre,” Electron. Lett. 42, 1270–1271 (2006). [CrossRef]
  18. L. An and G.-P. Wang, “Triple-periodical photonic crystal heterostructures for multichannel ultranarrow transmission filters,” Chin. Phys. Lett. 23, 388 (2006). [CrossRef]
  19. W. Zhou, D. Mackie, M. Taysinglara, G. Dang, P. Newman, and S. Svensson, “Novel reconfigurable semiconductor photonic crystal-MEMS device,” Solid-State Electron. 50, 908–913 (2006). [CrossRef]
  20. T. Takahata, K. Hoshiro, K. Matsumoto, and I. Shimoyama, “Photonic crystal attenuator with a flexible waveguide and nano-rods,” in International Conference on Micro Electro Mechanical Systems, MEMS 2006 (IEEE, 2006), pp. 834–837.
  21. L. J. Kauppinen, T. J. Pinkert, H. J. W. M. Hoekstra, and R. M. de Ridder, “Photonic crystal cavity-based Y splitter for mechano-optical switching,” IEEE Photon. Technol. Lett. 22, 966–968 (2010). [CrossRef]
  22. S. Mujumdar, A. F. Koenderink, R. Wüest, and V. Sandoghdar, “Nano-optomechanical characterization and manipulation of photonic crystals,” IEEE J. Quantum Electron. 13, 253–261 (2007). [CrossRef]
  23. H. Kim and M. J. Kim, “Design and characterization of dual-band-pass filters for optical communication,” J. Korean Phys. Soc. 53, 1607–1611 (2008). [CrossRef]
  24. T. Richter, R. Ludwig, J. K. Fischer, S. Watanabe, R. Okabe, T. Kato, and C. Schubert, “All-optical level equalization of data packets using a fiber-optic parametric amplifier,” in 36th European Conference and Exhibition on Optical Communication, ECOC 2010 (IEEE, 2010), pp. 1–3.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited