OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 32 — Nov. 10, 2012
  • pp: 7794–7799

Influence of symmetry breaking in a planar metamaterial on transparency effect and sensing application

Lei Zhu, Liang Dong, Fan-yi Meng, Jia-hui Fu, and Qun Wu  »View Author Affiliations


Applied Optics, Vol. 51, Issue 32, pp. 7794-7799 (2012)
http://dx.doi.org/10.1364/AO.51.007794


View Full Text Article

Enhanced HTML    Acrobat PDF (424 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The influence of symmetry breaking in a planar metamaterial on transparency effect is numerically investigated. The planar metamaterial’s cell is formed by three parallel metal wires. From numerical simulation results, we can see that the transparency effect results from the asymmetric coupling between the cut wires. The excited mechanism of the transparency effect is further analyzed by using the hybridization concept. It is found that the coupling fields between the cut wires play key roles and lead to the spectral splitting of the resonance, i.e., the classical electromagnetically induced transparency effect. The metamaterial sensor based on the refractive index variation of the surrounding material is also numerically demonstrated and yields a sensitivity of 9.47mm/RIU and a figure of merit of 13.5. In addition, the spectral response of the metamaterial is quantitatively described via the “three-particle” model. The analytically calculated results of the model show a good agreement with the simulation results.

© 2012 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(350.4010) Other areas of optics : Microwaves
(160.3918) Materials : Metamaterials

ToC Category:
Materials

History
Original Manuscript: August 13, 2012
Revised Manuscript: October 7, 2012
Manuscript Accepted: October 10, 2012
Published: November 8, 2012

Citation
Lei Zhu, Liang Dong, Fan-yi Meng, Jia-hui Fu, and Qun Wu, "Influence of symmetry breaking in a planar metamaterial on transparency effect and sensing application," Appl. Opt. 51, 7794-7799 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-32-7794


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Ding, C. Fan, Y. Cheng, E. Liang, and Q. Xue, “Plasmon-induced transparency by detuned magnetic atoms in trirod metamaterials,” Appl. Opt. 51, 1879–1885 (2012). [CrossRef]
  2. A. Ourir, R. Abdeddaim, and J. d. Rosny, “Double-T metamaterial for parallel and normal transverse electric incident waves, ” Opt. Lett. 36, 1527–1529 (2011). [CrossRef]
  3. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001). [CrossRef]
  4. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef]
  5. L. K. Sun, H. F. Cheng, Y. J. Zhou, and J. Wang, “Broadband metamaterial absorber based on coupling resistive frequency selective surface,” Opt. Express 20, 4675–4680 (2012). [CrossRef]
  6. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nature 9, 707–715 (2010). [CrossRef]
  7. L. Zhu, F. Y. Meng, J. H. Fu, and Q. Wu, “Electromagnetically induced transparency metamaterial with polarization insensitivity based on multi-quasi-dark modes,” J. Phys. D 45, 445105 (2012). [CrossRef]
  8. R. Singh, I. A. I. Al-Naib, Y. P. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. L. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99, 201107 (2011). [CrossRef]
  9. A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76, 201405(2007). [CrossRef]
  10. M. Rahmani, B. Lukiyanchuk, B. Ng, K. G. A. Tavakkoli, Y. F. Liew, and M. H. Hong, “Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers,” Opt. Express 19, 4949–4956 (2011). [CrossRef]
  11. J. Cong, B. Yun, and Y. Cui, “Negative-index metamaterial at visible frequencies based on high order plasmon resonance,” Appl. Opt. 51, 2469–2476 (2012). [CrossRef]
  12. L. Zhu, F. Y. Meng, J. H. Fu, Q. Wu, and J. Hua, “An approach to configure low-loss and full transmission metamaterial based on electromagnetically induced transparency,” IEEE Trans. Magn. 48, 4285–4288 (2012).
  13. F. Y. Meng, J. H. Fu, K. Zhang, Q. Wu, J. Y. Kim, J. J. Choi, B. Lee, and J. C. Lee, “Metamaterial analogue of electromagnetically induced transparency in two orthogonal directions,” J. Phys. D 44, 265402 (2011). [CrossRef]
  14. C. L. G. Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70, 37–41 (2002). [CrossRef]
  15. K. L. Tsakmakidis, M. S. Wartak, J. J. H. Cook, J. M. Hamm, and O. Hess, “Negative-permeability electromagnetically induced transparent and magnetically active metamaterials,” Phys. Rev. A 81, 195128 (2010).
  16. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17, 5595–5605 (2009). [CrossRef]
  17. X. R. Jin, J. Park, H. Y. Zheng, S. Lee, Y. Lee, J. Y. Rhee, K. W. Kim, H. S. Cheong, and W. H. Jang, “Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling,” Opt. Express 19, 21652–21657 (2011). [CrossRef]
  18. S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80, 153103 (2009). [CrossRef]
  19. F. Y. Meng, F. Zhang, K. Zhang, and Q. Wu, “Low-loss magnetic metamaterial based on analog of electromagnetically induced transparency,” IEEE Trans. Magn. 47, 3347–3350 (2011). [CrossRef]
  20. M. Kang, Y. N. Li, J. Chen, J. Chen, Q. Bai, H. T. Wang, and P. H. Wu, “Slow light in a simple metamaterial structure constructed by cut and continuous metal strips,” Appl. Phys. B 100, 699–703 (2010). [CrossRef]
  21. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009). [CrossRef]
  22. B. Lukiyanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010). [CrossRef]
  23. M. Rahmani, B. Lukiyanchuk, B. Ng, K. G. A. Tavakkoli, Y. F. Liew, and M. H. Hong, “Influence of symmetry breaking in pentamers on Fano resonance and near-field energy localization,” Opt. Mater. Express 1, 1409–1415 (2011). [CrossRef]
  24. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99, 147401 (2007). [CrossRef]
  25. K. Aydin, I. M. Pryce, and H. A. Atwater, “Symmetry breaking and strong coupling in planar optical metamaterials,” Opt. Express 18, 13407–13417 (2010). [CrossRef]
  26. L. Zhu, F. Y. Meng, J. H. Fu, Q. Wu, and J. Hua, “Multi-band slow light metamaterial,” Opt. Express 20, 4494–4502 (2012). [CrossRef]
  27. A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8, 2171–2175 (2008). [CrossRef]
  28. B. Kanté, S. N. Burokur, A. Sellier, A. de Lustrac, and J. M. Lourtioz, “Controlling plasmon hybridization for negative refraction metamaterials,” Phys. Rev. B 79, 075121 (2009). [CrossRef]
  29. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004). [CrossRef]
  30. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19, 3628–3632 (2007). [CrossRef]
  31. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010). [CrossRef]
  32. A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express 14, 11616–11621 (2006). [CrossRef]
  33. X. R. Jin, Y. H. Lu, H. Y. Zheng, Y. P. Lee, J. Y. Rhee, K. W. Kim, and W. H. Jang, “Plasmonic electromagnetically-induced transparency in metamaterial based on second-order plasmonic resonance,” Opt. Commun. 284, 4766–4768 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited