OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 32 — Nov. 10, 2012
  • pp: 7800–7809

Integrated optofluidic system for monitoring particle mass concentrations based on planar emitter–receiver units

Meike Hofmann, Ralf Müller, Sebastian Stoebenau, Thomas Stauden, Olaf Brodersen, and Stefan Sinzinger  »View Author Affiliations

Applied Optics, Vol. 51, Issue 32, pp. 7800-7809 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1655 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate an integrated optofluidic system for monitoring the particle mass concentration and the Sauter mean diameter of polydisperse flowing suspensions of water and standardized test dust. For optimum integration, a planar emitter–receiver unit is developed and fabricated on Si technology. A vertical cavity surface emitting laser at 850 nm serves as light source, and monolithically integrated segmented photodiodes detect both the attenuation of the primary light beam and the scattered light. The optical system is integrated into a planar transparent polymethylmethacrylate substrate by micromilling of an optical freeform surface and electron beam evaporation of reflective layers following the concept of planar integrated free-space optical systems. We are able to detect 1mg/L of the standards ISO 12103-A2 (fine test dust), -A3 (medium test dust), and -A4 (coarse test dust) and to determine the Sauter mean diameter of the particle size distribution.

© 2012 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(280.2490) Remote sensing and sensors : Flow diagnostics
(290.5850) Scattering : Scattering, particles

ToC Category:

Original Manuscript: August 2, 2012
Revised Manuscript: September 24, 2012
Manuscript Accepted: September 24, 2012
Published: November 8, 2012

Virtual Issues
Vol. 7, Iss. 12 Virtual Journal for Biomedical Optics

Meike Hofmann, Ralf Müller, Sebastian Stoebenau, Thomas Stauden, Olaf Brodersen, and Stefan Sinzinger, "Integrated optofluidic system for monitoring particle mass concentrations based on planar emitter–receiver units," Appl. Opt. 51, 7800-7809 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. L. Zollars, “Turbidimetric method for on-line determination of latex particle number and particle size distribution,” J. Colloid Interface Sci. 74, 163–172 (1980). [CrossRef]
  2. T. Kourti, “Turbidimetry in particle size analysis,” in Encyclopedia of Analytical Chemistry: Instrumentation and Applications (Wiley, 2000), pp. 5549–5579.
  3. J. Gregory, “Turbidity fluctuations in flowing suspensions,” J. Colloid Interface Sci. 105, 357–371 (1985). [CrossRef]
  4. B. Wessely, J. Altmann, and S. Ripperger, “The use of statistical properties of transmission signals for particle characterization,” Chem. Eng. Technol. 19, 438–442 (1996). [CrossRef]
  5. M. Breitenstein, U. Kräuter, and U. Riebel, “The fundamentals of particle size analysis by transmission fluctuation spectrometry. Part 1: a theory of temporal transmission fluctuations in dilute suspensions,” Part. Part. Syst. Charact. 16, 249–256 (1999). [CrossRef]
  6. M. Breitenstein, U. Riebel, and J. Shen, “The fundamentals of particle size analysis by transmission fluctuation spectrometry. Part 2: a theory on transmission fluctuations with combined spatial and temporal averaging,” Part. Part. Syst. Charact. 18, 134–141 (2001). [CrossRef]
  7. L. Steinke, B. Wessely, and S. Ripperger, “Optische Extinktionsmessverfahren zur Inline-Kontrolle disperser Stoffsysteme,” Chem. Ing. Tech. 81, 735–747 (2009). [CrossRef]
  8. H.-H. Qiu and M. Sommerfeld, “A reliable method for determining the measurement volume size and particle mass fluxes using phase-doppler anemometry,” Exp. Fluids 13, 393–404 (1992). [CrossRef]
  9. I. Ayranci, G. Pinguet, D. Escudié, N. Selçuk, R. Vaillon, and F. André, “Effect of particle polydispersity on particle concentration measurement by using laser doppler anemometry,” Exp. Therm. Fluid. Sci. 31, 839–847 (2007). [CrossRef]
  10. A. P. Nefedov, O. F. Petrov, and O. S. Vaulina, “Analysis of particle sizes, concentration, and refractive index in measurement of light transmittance in the forward-scattering-angle range,” Appl. Opt. 36, 1357–1366 (1997). [CrossRef]
  11. D. Chicea, “Biospeckle size and contrast measurement application in particle sizing and concentration assessment,” Rom. J. Phys. 52, 625–632 (2007).
  12. O. F. Genceli, J. B. Schemni, and C. M. Vest, “Measurement of size and concentration of scattering particles by speckle photography,” J. Opt. Soc. Am. 70, 1212–1218 (1980). [CrossRef]
  13. M. Hofmann, R. Kampmann, and S. Sinzinger, “Perturbed Talbot patterns for the measurement of low particle concentrations in fluids,” Appl. Opt. 51, 1605–1615 (2012). [CrossRef]
  14. R. Müller and E. Förster, “Laser-based emitter-receiver-device with integrated micro-optics for the measurement of scattered light,” TM Tech. Mess. 75, 663–669 (2008). [CrossRef]
  15. R. Müller and O. Brodersen, “Emitter-receiver-devices to measure scattered light—an alternative to particle counters?,” TM Tech. Mess. 78, 448–456 (2011). [CrossRef]
  16. J. Jahns and A. Huang, “Planar integration of free-space optical components,” Appl. Opt. 28, 1602–1605 (1989). [CrossRef]
  17. M. Hofmann, S. Hauguth-Frank, V. Lebedev, O. Ambacher, and S. Sinzinger, “Sapphire-GaN-based planar integrated free-space optical system,” Appl. Opt. 47, 2950–2955(2008). [CrossRef]
  18. M. Jarczynski, T. Seiler, and J. Jahns, “Integrated three-dimensional optical multilayer using free-space optics,” Appl. Opt. 45, 6335–6341 (2006). [CrossRef]
  19. V. Daria, J. Glückstad, P. C. Mogensen, R. L. Eriksen, and S. Sinzinger, “Implementing the generalized phase-contrast method in a planar-integrated micro-optics platform,” Opt. Lett. 27, 945–947 (2002). [CrossRef]
  20. S. Sinzinger, “Microoptically integrated correlators for security applications,” Opt. Commun. 209, 69–74 (2002). [CrossRef]
  21. M. Rhodes, Introduction to Particle Technology (Wiley, 1998).
  22. R. G. Holdich, Fundamentals of Particle Technology (Midland Information Technology, 2002).
  23. L. C. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941). [CrossRef]
  24. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908). [CrossRef]
  25. U. Brokmann, K. Sönnichsen, and D. Hülsenberg, “Application of micro structured photosensitive glass for the gravure printing process,” Microsyst. Technol. 14, 1635–1639 (2008). [CrossRef]
  26. M. Hofmann, X. Ma, J. Schneider, and S. Sinzinger, “Highly integrated optical microsystem for particle concentration measurement,” Proc. SPIE 7716, 77160T (2010). [CrossRef]
  27. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).
  28. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
  29. P. Laven, “MiePlot,” http://www.philiplaven.com/mieplot.htm .
  30. J. Gregory and D. W. Nelson, “Monitoring of aggregates in flowing suspensions,” Colloids Surf. 18, 175–188 (1986). [CrossRef]
  31. S. Stoebenau, R. Kleindienst, R. Kampmann, and S. Sinzinger, “Enhanced optical functionalities by integrated ultraprecision machining techniques,” presented at the 11th EUSPEN International Conference, Como, Italy, 23–26 May 2011.
  32. S. Stoebenau, R. Kleindienst, M. Hofmann, and S. Sinzinger, “Computer-aided manufacturing for freeform optical elements by ultraprecision micromilling,” Proc. SPIE 8126, 812614 (2011). [CrossRef]
  33. S. van Overmeire, H. Ottevaere, G. Desmet, and H. Thienpont, “Miniaturized detection system for fluorescence and absorbance measurements in chromatographic applications,” IEEE J. Sel. Top. Quantum Electron. 14, 140–150(2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited