OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 32 — Nov. 10, 2012
  • pp: 7834–7841

Optimization of gain bandwidth and gain ripple of a hybrid Raman/parametric amplifier for access network applications

Sasanthi Peiris, Nicholas Madamopoulos, Neophytos Antoniades, Muhammad Ali Ummy, Mohamed Ali, and Roger Dorsinville  »View Author Affiliations


Applied Optics, Vol. 51, Issue 32, pp. 7834-7841 (2012)
http://dx.doi.org/10.1364/AO.51.007834


View Full Text Article

Enhanced HTML    Acrobat PDF (936 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe the mathematical model and present simulation results for the optimization of a hybrid Raman/optical parametric amplifier (HROPA), exhibiting a bandwidth of 170 nm and low ripple that covers the top half of the wavelength plan (e.g., 1441 to 1611 nm) of next generation coarse wavelength division multiplexed passive optical network systems. We show that a critical parameter in the proper amplifier parameter optimization is the inclusion of the fourth-order dispersion coefficient (β4). Omission of β4 can lead to over-estimation or underestimation of the gain bandwidth, and hence its inclusion in the analysis of the HROPA is necessary.

© 2012 Optical Society of America

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(190.5650) Nonlinear optics : Raman effect
(190.4975) Nonlinear optics : Parametric processes

ToC Category:
Nonlinear Optics

History
Original Manuscript: July 23, 2012
Revised Manuscript: October 3, 2012
Manuscript Accepted: October 11, 2012
Published: November 9, 2012

Citation
Sasanthi Peiris, Nicholas Madamopoulos, Neophytos Antoniades, Muhammad Ali Ummy, Mohamed Ali, and Roger Dorsinville, "Optimization of gain bandwidth and gain ripple of a hybrid Raman/parametric amplifier for access network applications," Appl. Opt. 51, 7834-7841 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-32-7834


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. J. Effenberger, H. Mukai, S. Park, and T. Pfeiffer, “Next-generation PON—part II: candidate systems for next-generation PON,” IEEE Commun. Mag. 47(11), 50–57 (2009). [CrossRef]
  2. “Spectral grids for WDM applications: CWDM wavelength grid,” ITU-T Recommendation G.694.2, from Series G: Transmission Systems and Media, Digital Systems and Networks: Transmission media characteristics—Characteristics of optical components and subsystems (International Telecommunication Union, 2003).
  3. P. P. Iannone, K. C. Reichmann, and L. H. Spiekman, “Amplified CWDM systems,” in 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2003 (LEOS 2003) (IEEE, 2003), Vol. 2, pp. 678–679.
  4. P. P. Iannone, H. H. Lee, K. C. Reichmann, X. Zhou, M. Du, B. Pálsdóttir, K. Feder, P. Westbrook, K. Brar, J. Mann, and L. Spiekman, “Four extended-reach TDM PONs sharing a bidirectional hybrid CWDM amplifier,” J. Lightwave Technol. 26, 138–143 (2008). [CrossRef]
  5. H. H. Lee, P. P. Iannone, K. Reichmann, J. Lee, and B. Pálsdóttir, “A C/L-band gain-clamped SOA-Raman hybrid amplifier for CWDM access networks,” IEEE Photon. Technol. Lett. 20, 196–198 (2008). [CrossRef]
  6. H. H. Lee, K. Reichmann, P. P. Iannone, and J. S. Lee, “A gain-clamped SOA-Raman hybrid amplifier for a CWDM access network without gain-saturation induced crosstalk,” in Conference on Lasers and Electro-Optics/Pacific Rim 2007 (CLEO/PR 2007) (Optical Society of America, 2007), paper WD1_2.
  7. Y. Shachaf, P. Kourtessis, and J. M. Senior, “A full-duplex access network based on CWDM-routed PONs,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JThA101.
  8. P. P. Iannone, H. H. Lee, K. C. Reichmann, X. Zhou, M. Du, B. Palsdottir, K. Feder, P. Westbrook, K. Brar, J. Mann, and L. Spiekman, “Hybrid CWDM amplifier shared by multiple TDM pons,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper PDP13.
  9. J. M. Oh, S. G. Koo, D. Lee, and S. J. Park, “Enhanced system performance of an RSOA based hybrid WDM/TDM system using a remotely pumped erbium-doped fiber amplifier,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, (OFC/NFOEC), OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper PDP9.
  10. H. H. Lee, K. C. Reichmann, P. P. Iannone, X. Zhou, and B. Palsdottir, “A hybrid-amplified PON with 75 nm downstream band-width, 60 km reach, 1∶64 split, and multiple video services,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (Optical Society of America, 2007), paper OWL2.
  11. J. Kani and M. Jinno, “Wideband and flat-gain optical amplification from 1460 to 1510 nm by serial combination of a thulium-doped fluoride fiber amplifier and fiber Raman amplifier,” Electron. Lett. 35, 1004–1006 (1999). [CrossRef]
  12. S. Kawai, H. Masuda, K. I. Suzuki, and K. Aida, “75 nm 3 dB gain-band optical amplifier and discrete Raman amplification,” Electron. Lett. 35, 897–898 (1999). [CrossRef]
  13. H. H. Lee, P. P. Iannone, K. C. Richmann, and B. W. Kim, “A bidirectional SOA-Raman hybrid amplifier shared by 2.5  Gb/s, 60 km long-reach WDM-TDM PON,” in 34th European Conference on Optical Communication, 2008 (ECOC 2008) (IEEE, 2008), pp. 215–216.
  14. D. Nesset, S. Appathurai, R. Davey, and T. Kelly, “Extended reach GPON using high gain semiconductor optical amplifiers,” in The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JWA107.
  15. J. A. Lazaro, J. Prat, P. Chanclou, G. M. Tosi Beleffi, A. Teixeira, I. Tomkos, R. Soila, and V. Koratzinos, “Scalable extended reach PON,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OThL2.
  16. H. J. Thiele, L. Nelson, J. Thomas, B. Eichenbaum, L. Spiekman, and G. van den Hoven, “Linear optical amplifier for extended reach in CWDM transmission systems,” in Optical Fiber Communications Conference, Technical Digest (Optical Society of America, 2003), paper MF21.
  17. S. Park, R. Leavitt, R. Enck, V. Luciani, Y. Hu, P. J. S. Heim, D. Bowler, and M. Dagenais, “Semiconductor optical amplifier for CWDM operating over 1540–1620 nm,” IEEE Photon. Technol. Lett. 17, 980–982 (2005). [CrossRef]
  18. J. B. Rosolem, A. A. Juriollo, R. Arradi, A. D. Coral, J. C. Oliveira, and M. A. Romero, “Triple band silica based double pass EDFA with an embedded DCF module for CWDM applications,” in Optical Amplifiers and Their Applications, Technical Digest (CD) (Optical Society of America, 2005), paper WC4.
  19. J. B. Rosolem, A. A. Juriollo, R. Arradi, A. D. Coral, J. C. Oliveira, and M. A. Romero, “All silica triple band double pass EDFA for CWDM applications,” in Proceedings of the 18th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2005 (LEOS 2005) (IEEE, 2005), pp. 929–9030.
  20. T. Miyamoto, T. Tsuzaki, T. Okuno, M. Kakui, M. Hirano, M. Onoshi, M. Shigematsu, and M. Nishimura, “Highly-nonlinear-fiber-based discrete Raman amplifier for CWDM transmission system,” in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2003), paper MF19.
  21. K. C. Reichmann, P. P. Iannone, X. Zhou, N. J. Frigo, and B. R. Hemenway, “240 km CWDM transmission using cascaded SOA Raman hybrid amplifiers with 70 nm bandwidth,” IEEE Photon. Technol. Lett. 18, 328–330 (2006). [CrossRef]
  22. H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, and E. Rabarijaona, “Pump interactions in a 100 nm bandwidth Raman amplifier,” IEEE Photon. Technol. Lett. 11, 530–532 (1999). [CrossRef]
  23. C. Headley and G. P. Agrawal, Raman Amplification in Fiber Optical Communication Systems (Elsevier/Academic, 2004).
  24. K. K. Y. Wong, M. E. Marhic, G. Kalogerakis, and L. G. Kazovsky, “Fiber optical parametric amplifier and wavelength converter with record 360 nm gain bandwidth and 50 dB signal gain,” in Conference on Lasers and Electro-Optics, 2003 (IEEE, 2003), paper CThPDB6.
  25. A. Altuncu, A. S. Siddiqui, A. Ellis, M. A. Newhouse, and A. J. Antos, “Gain and noise figure characterization of a 68 km long distributed erbium doped fiber amplifier,” Electron. Lett. 32, 1800–1801 (1996). [CrossRef]
  26. M. C. Ho, K. Uesaka, M. E. Marhic, Y. Akasaka, and L. G. Kazovsky, “200 nm-bandwidth fiber optical amplifier combining parametric and Raman gain,” J. Lightwave Technol. 19, 977–981 (2001). [CrossRef]
  27. S. H. Wang, L. Xu, P. K. A. Wai, and H. Y. Tam, “Optimization of Raman-assisted fiber optical parametric amplifier gain,” J. Lightwave Technol. 29, 1172–1181 (2011). [CrossRef]
  28. S. H. Wang, D. Wang, C. Lu, T. H. Cheng, and P. K. A. Wai, “Multiple Raman pump assisted fiber optical parametric amplifiers,” J. Lightwave Technol. 29, 2601–2608 (2011). [CrossRef]
  29. J. F. L. Freitas, M. B. Costa e Silva, S. R. Liitbi, and A. S. L. Gomes, “Raman enhanced parametric amplifier based S-C band wavelength converter: experiment and simulations,” Opt. Commun. 255, 314–318 (2005). [CrossRef]
  30. M. A. Ummy, M. F. Arend, L. Leng, N. Madamopoulos, and R. Dorsinville, “Extending the gain bandwidth of combined Raman-parametric fiber amplifiers using highly nonlinear fiber,” J. Lightwave Technol. 27, 583–589 (2009). [CrossRef]
  31. X. Jiang, C. Jiang, and X. Zhang, “Design of Raman-parametric fiber amplifier for wavelength division multiplex transmission system,” Chin. Opt. Lett. 6, 327–330 (2008). [CrossRef]
  32. S. Peiris, N. Madamopoulos, N. Antoniades, M. A. Ummy, R. Dorsinville, and M. Ali, “Extended gain bandwidth low ripple hybrid Raman-parametric amplifier design for PON applications,” presented at IEEE Photonics Conference 2012, Burlingame, California, USA, 23–27 September 2012, paper ME-2.
  33. LAN/MAN Standards Committee, “Carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications, amendment 1: physical layer specifications and management parameters for 10  Gb/s passive optical networks,” in IEEE Std 802.3av-2009 (IEEE Computer Society, 2009).
  34. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002). [CrossRef]
  35. F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, “Impact of dispersion fluctuations on dual-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 16, 1292–1294 (2004). [CrossRef]
  36. OFS-HNLF Datasheet and data provided by L. Grüner-Nielsen, Incubation Center, OFS Denmark, Priorparken 680, DK-2605 Brondby, Denmark (personal communication, 2012).
  37. D. M. Spirit, L. C. Blank, S. T. Davey, and D. L. Williams, “Systems aspects of Raman fiber amplifiers,” IEE Proc. J. Optoelectron. 137, 221–224 (1990).
  38. M. E. Marhic, N. Kagi, T.-K. Chiang, and L. G. Kazovsky, “Broadband fiber optical parametric amplifiers,” Opt. Lett. 21, 573–575 (1996). [CrossRef]
  39. L. A. M. Saito, P. D. Taveira, P. B. Gaarde, K. D. Souza, and E. A. D. Souza, “Multi-pump discrete Raman amplifier for CWDM system in the O-band,” Opt. Fiber Technol. 14, 294–298 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited