OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 32 — Nov. 10, 2012
  • pp: 7858–7863

Absorption spectroscopy of powdered materials using time-resolved diffuse optical methods

Cosimo D’Andrea, Ekaterina A. Obraztsova, Andrea Farina, Paola Taroni, Guglielmo Lanzani, and Antonio Pifferi  »View Author Affiliations


Applied Optics, Vol. 51, Issue 32, pp. 7858-7863 (2012)
http://dx.doi.org/10.1364/AO.51.007858


View Full Text Article

Enhanced HTML    Acrobat PDF (709 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper a novel method, based on time-resolved diffuse optical spectroscopy, is proposed to measure the absorption of small amounts of nanostructured powder materials independent of scattering. Experimental validation, in the visible and near-infrared spectral range, has been carried out on India Ink particles. The effectiveness of the technique to measure scattering-free absorption is demonstrated on carbon nanotubes. The comparison between the absorption spectra acquired by the proposed method and conventional measurements performed with a commercial spectrophotometer is discussed.

© 2012 Optical Society of America

OCIS Codes
(290.4210) Scattering : Multiple scattering
(290.7050) Scattering : Turbid media
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(160.4236) Materials : Nanomaterials

ToC Category:
Spectroscopy

History
Original Manuscript: September 11, 2012
Revised Manuscript: October 16, 2012
Manuscript Accepted: October 17, 2012
Published: November 9, 2012

Virtual Issues
Vol. 7, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Cosimo D’Andrea, Ekaterina A. Obraztsova, Andrea Farina, Paola Taroni, Guglielmo Lanzani, and Antonio Pifferi, "Absorption spectroscopy of powdered materials using time-resolved diffuse optical methods," Appl. Opt. 51, 7858-7863 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-32-7858


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. H. Hielscher and P. Taroni, eds., Diffuse Optical Imaging III, Proceedings of European Conference on Biomedical Optics (SPIE, 2011) Vol. 8088.
  2. A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48(3), 34 (1995). [CrossRef]
  3. M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical application,” J. Biomed. Opt. 12, 062104 (2007). [CrossRef]
  4. P. Taroni, “Diffuse optical imaging and spectroscopy of the breast: a brief outline of history and perspectives,” Photochem. Photobiol. Sci. 11, 241–250 (2012). [CrossRef]
  5. R. Cubeddu, G. Canti, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Effects of photodynamic therapy on the absorption properties of disulphonated aluminum phthalocyanine in tumor-bearing mice,” J. Photochem. Photobiol. B 60, 73–78 (2001). [CrossRef]
  6. D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997). [CrossRef]
  7. D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4, 359–367 (2008). [CrossRef]
  8. C. Abrahamsson, J. Johansson, S. Andersson-Engels, S. Svanberg, and S. Folestad, “Time-resolved NIR spectroscopy for quantitative analysis of intact pharmaceutical tablets,” Anal. Chem. 77, 1055–1059 (2005). [CrossRef]
  9. Z. Sun, S. Torrance, F. K. McNeil-Watson, and E. M. Sevick-Muraca, “Application of frequency domain photon migration to particle size analysis and monitoring of pharmaceutical powders,” Anal. Chem. 75, 1720–1725 (2003). [CrossRef]
  10. R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, C. Dover, D. Johnson, M. Ruiz-Altisent, and C. Valero, “Nondestructive quantification of chemical and physical properties of fruits by time-resolved reflectance spectroscopy in the wavelength range 650–1000 nm,” Appl. Opt. 40, 538–543 (2001). [CrossRef]
  11. C. D’Andrea, A. Farina, D. Comelli, A. Pifferi, P. Taroni, G. Valentini, R. Cubeddu, L. Zoia, M. Orlandi, and A. Kienle, “Time-resolved optical spectroscopy of wood,” Appl. Spectrosc. 62, 569–574 (2008). [CrossRef]
  12. O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett. 8, 2638–2642 (2008). [CrossRef]
  13. S. R. Arridge and W. R. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett. 23, 882–884 (1998). [CrossRef]
  14. M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, “Band gap fluorescence from individual single-walled carbon nanotubes,” Science 297, 593–596 (2002). [CrossRef]
  15. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989). [CrossRef]
  16. F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue and Other Diffusive Media (SPIE, 2010), pp. 57–91.
  17. T. Svensson, E. Adolfsson, M. Lewander, C. T. Xu, and S. Svanberg, “Disordered, strongly scattering porous materials as miniature multipass gas cells,” Phys. Rev. Lett. 107, 143901 (2011). [CrossRef]
  18. A. Bassi, A. Farina, C. D’Andrea, A. Pifferi, G. Valentini, and R. Cubeddu, “Portable, large-bandwidth time-resolved system for diffuse optical spectroscopy,” Opt. Express 15, 14482–14487 (2007). [CrossRef]
  19. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing (Cambridge University, 1988).
  20. S. J. Madsen, M. S. Patterson, and B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol. 37, 985–993 (1992). [CrossRef]
  21. P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith, and R. E. Smalley, “Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide,” Chem. Phys. Lett. 313, 91–97 (1999). [CrossRef]
  22. A. I. Chernov, E. D. Obraztsova, and A. S. Lobach, “Optical properties of polymer films with embedded single-wall carbon nanotubes,” Phys. Status Solidi B 244, 4231–4235 (2007). [CrossRef]
  23. N. Minami, Y. Kim, S. Kazaoui, and B. Nalini, “Cellulose derivatives as excellent dispersants for single-wall carbon nanotubes as demonstrated by absorption and photoluminescence spectroscopy,” Appl. Phys. Lett. 88, 093123 (2006). [CrossRef]
  24. J. R. Mourant, T. Fuselier, J. Boyer, and I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949–957 (1997). [CrossRef]
  25. C. D’Andrea, L. Spinelli, A. Bassi, D. Contini, J. Swartling, A. Torricelli, and R. Cubeddu, “Time-resolved spectrally constrained method for the quantification of chromophore concentrations and scattering parameters in diffusing media,” Opt. Express 14, 1888–1898 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited