OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 32 — Nov. 10, 2012
  • pp: 7869–7876

Numerical simulation of the influence of the elastic modulus of a tumor on laser-induced ultrasonics in soft tissue

Rong Rong An, Xiao Sen Luo, and Zhong Hua Shen  »View Author Affiliations


Applied Optics, Vol. 51, Issue 32, pp. 7869-7876 (2012)
http://dx.doi.org/10.1364/AO.51.007869


View Full Text Article

Enhanced HTML    Acrobat PDF (878 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The influence of the elastic modulus of a tumor (EMT) on the laser-generated thermoelastic force source and ultrasound waves are investigated by using the finite element method. Taking into account the effects of thermal diffusion, optical penetration, and finite duration of laser pulse, the transient temperature distribution is obtained. Applying this temperature field to structure analyses as thermal loading, the thermoelastic stress field and laser-induced ultrasound wave in soft tissues are obtained. The results show that there is a linear correlation between the maximum compressive stress and the elastic modulus of tissues. It is also shown that the features and frequency regions of the laser-induced ultrasound waveform have a close relationship with the EMT, which has been further verified by a corresponding experiment.

© 2012 Optical Society of America

OCIS Codes
(170.5120) Medical optics and biotechnology : Photoacoustic imaging
(280.3375) Remote sensing and sensors : Laser induced ultrasonics
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: June 14, 2012
Revised Manuscript: September 19, 2012
Manuscript Accepted: October 16, 2012
Published: November 9, 2012

Virtual Issues
Vol. 7, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Rong Rong An, Xiao Sen Luo, and Zhong Hua Shen, "Numerical simulation of the influence of the elastic modulus of a tumor on laser-induced ultrasonics in soft tissue," Appl. Opt. 51, 7869-7876 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-32-7869


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. M. Graf, S. Kim, B. Wang, R. Smalling, and S. Emelianov, “Noninvasive detection of intimal xanthoma using combined ultrasound, strain rate and photoacoustic imaging,” Ultrasonics 52, 435–441 (2012). [CrossRef]
  2. D. Pan, M. Pramanik, A. Senpan, J. S. Allen, H. Zhang, S. A. Wickline, L. V. Wang, and G. M. Lanza, “Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons,” FASEB J. 25, 875–882 (2011). [CrossRef]
  3. D. Piras, W. Xia, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the Twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Topics Quantum Electron. 16, 730–739 (2010). [CrossRef]
  4. L. Zeng, G. Liu, D. Yang, and X. Ji, “3D-visual laser-diode-based photoacoustic imaging,” Opt. Express 20, 1237–1246 (2012). [CrossRef]
  5. G. Ku, K. Maslov, L. Li, and L. V. Wang, “Photoacoustic microscopy with 2 μm transverse resolution,” J. Biomed. Opt. 15, 021302 (2010). [CrossRef]
  6. Y. Zeng, D. Xing, Y. Wang, B. Yin, and Q. Chen, “Photoacoustic and ultrasonic coimage with a linear transducer array,” Opt. Lett. 29, 1760–1762 (2004). [CrossRef]
  7. R. A. Kruger, P. Liu, and C. R. Appledorn, “Photoacoustic ultrasound (PAUS)-reconstruction tomography,” Med. Phys. 22, 1605–1609 (1995). [CrossRef]
  8. G. Ku, X. Wang, X. Xie, G. Stoica, and L. V. Wang, “Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography,” Appl. Opt. 44, 770–775 (2005). [CrossRef]
  9. C. Zhang, K. Maslov, and L. V. Wang, “Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo,” Opt. Lett. 35, 3195–3197 (2010). [CrossRef]
  10. B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15, 021314 (2010). [CrossRef]
  11. Y. Yuan, S. Yang, and D. Xing, “Optical-resolution photoacoustic microscopy based on two-dimensional scanning galvanometer,” Appl. Phys. Lett. 100, 023702 (2012). [CrossRef]
  12. T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrason. Imag. 20, 260–274 (1998).
  13. S. Kruse, J. Smith, A. Lawrence, M. Dresner, A. Manduca, J. Greenleaf, and R. Ehman, “Tissue characterization using magnetic resonance elastography: preliminary results,” Phys. Med. Biol. 45, 1579–1590 (2000). [CrossRef]
  14. A. Sarvazyan, A. Skovoroda, S. Emelianov, J. Fowlkes, J. Pipe, R. Adler, R. Buxton, and P. Carson, “Biophysical bases of elasticity imaging,” Acoust. Imaging 21, 223–240 (1995). [CrossRef]
  15. R. Sinkus, J. Lorenzen, D. Schrader, M. Lorenzen, M. Dargatz, and D. Holz, “High-resolution tensor MR elastography for breast tumour detection,” Phys. Med. Biol. 45, 1649–1664 (2000). [CrossRef]
  16. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006). [CrossRef]
  17. A. Lazarus, B. Prabel, and D. Combescure, “A 3D finite element model for the vibration analysis of asymmetric rotating machines,” J. Sound Vib. 329, 3780–3797(2010). [CrossRef]
  18. B. Vaseghi, N. Takorabet, and F. Meibody, “Transient finite element analysis of induction machines with stator winding turn fault,” Prog. Electromagn. Res. 95, 1–18 (2009). [CrossRef]
  19. W. B. Edwards and K. L. Troy, “Finite element prediction of surface strain and fracture strength at the distal radius,” Med. Eng. Phys. 34, 290–298 (2012). [CrossRef]
  20. J. Ripoll and V. Ntziachristos, “Quantitative point source photoacoustic inversion formulas for scattering and absorbing media,” Phys. Rev. E 71, 031912 (2005). [CrossRef]
  21. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).
  22. L. D. Landau and E. Lifshitz, Theory of Elasticity, 7 of Course of Theoretical Physics series (Pergamon, 1986), pp. 13–92.
  23. I. Itzkan, D. Albagli, M. L. Dark, L. T. Perelman, C. von Rosenberg, and M. S. Feld, “The thermoelastic basis of short pulsed laser ablation of biological tissue,” Proc. Nat. Acad. Sci. USA 92, 1960–1964 (1995). [CrossRef]
  24. J. N. Reddy, Solution Manual for an Introduction to the Finite Element Methods, 2nd ed. (McGraw-Hill, 1993).
  25. J. Wang, Z. Shen, B. Xu, X. Ni, J. Guan, and J. Lu, “Numerical simulation of laser-generated ultrasound in non-metallic material by the finite element method,” Opt. Laser Technol. 39, 806–813 (2007). [CrossRef]
  26. American National Standards Institute, American national standard for the safe use of lasers Tech. Rep. Z136.1-2000 (American National Standards Institute, 2000).
  27. M. F. Insana, R. F. Wagner, and D. G. Brown, “Describing small-scale structure in random media using pulse-echo ultrasound,” J. Acoust. Soc. Am. 87, 179–192 (1990). [CrossRef]
  28. M. Yamakawa, N. Nitta, T. Shiina, T. Matsumura, S. Tamano, T. Mitake, and E. Ueno, “High-speed freehand tissue elasticity imaging for breast diagnosis,” Jpn. J. Appl. Phys. 42, 3265–3270 (2003). [CrossRef]
  29. B. Choi, J. A. Pearce, and A. J. Welch, “Modelling infrared temperature measurements: implications for laser irradiation and cryogen cooling studies,” Phys. Med. Biol. 45, 541–557 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited