OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 33 — Nov. 20, 2012
  • pp: 7910–7919

Analytical approach for unique determination of cell parameters and equivalent birefringent parameters of a generally twisted nematic liquid crystal device

Chih-Jen Yu, Yao-Teng Tseng, Kuei-Chu Hsu, and Chien Chou  »View Author Affiliations


Applied Optics, Vol. 51, Issue 33, pp. 7910-7919 (2012)
http://dx.doi.org/10.1364/AO.51.007910


View Full Text Article

Enhanced HTML    Acrobat PDF (375 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In the measurement of a twisted nematic liquid crystal device (TNLCD) by an optical apparatus, the cell parameters of the TNLCD may result in multiple solutions in the measurement that all agree with the measured data; hence manufacturers cannot find a set of correct solutions from among the ambiguous ones. With the help of the optical equivalence theorem of a unitary optical system, the ambiguity of the measured parameters of a TNLCD, including cell parameters and equivalent birefringent parameters, can be simultaneously removed by an analytical approach using a single-wavelength polarimeter. The procedure for unique determination of the cell parameters is performed using a self-consistent condition to select a set of the correct solutions from all the possible solutions. The proposed method can be applied to characterize a generally TNLCD for which the twisted angle is close to 270° and the liquid crystal phase retardation is over 2π.

© 2012 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(230.3720) Optical devices : Liquid-crystal devices
(260.1440) Physical optics : Birefringence

ToC Category:
Optical Devices

History
Original Manuscript: July 24, 2012
Revised Manuscript: October 16, 2012
Manuscript Accepted: October 16, 2012
Published: November 14, 2012

Citation
Chih-Jen Yu, Yao-Teng Tseng, Kuei-Chu Hsu, and Chien Chou, "Analytical approach for unique determination of cell parameters and equivalent birefringent parameters of a generally twisted nematic liquid crystal device," Appl. Opt. 51, 7910-7919 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-33-7910


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. E. A. Saleh and K. Lu, “Theory and design of the liquid crystal TV as an optical spatial phase modulator,” Opt. Eng. 29, 240–246 (1990). [CrossRef]
  2. J. A. Davis, I. Moreno, and P. Tsai, “Polarization eigenstates for twisted-nematic liquid-crystal displays,” Appl. Opt. 37, 937–945 (1998). [CrossRef]
  3. C. Soutar and K. Lu, “Determination of the physical properties of an arbitrary twisted-nematic liquid crystal cell,” Opt. Eng. 33, 2704–2712 (1994). [CrossRef]
  4. M. Yamauchi, “Origin and characteristics of ambiguous properties in measuring physical parameters of twisted nematic liquid crystal spatial light modulators,” Opt. Eng. 41, 1134–1141 (2002). [CrossRef]
  5. J. A. Davis, D. B. Allison, K. G. D’Nelly, M. L. Wilson, and I. Moreno, “Ambiguities in measuring the physical parameters for twisted-nematic liquid crystal spatial light modulators,” Opt. Eng. 38, 705–709 (1999). [CrossRef]
  6. H. Kim, and Y. H. Lee, “Unique measurement of the parameters of a twisted-nematic liquid-crystal display,” Appl. Opt. 44, 1642–1648 (2005). [CrossRef]
  7. A. Hermerscmidt, S. Quiram, F. Kallmeyer, and E. H. Joachim, “Determination of the Jones matrix of an LC cell and derivation of the physical parameters of the LC molecules,” Proc. SPIE 6587, 65871B (2007). [CrossRef]
  8. K. Dev, A. Prakarsa, Y. Jiang, H. Lee, and A. Asundi, “Twisted nematic liquid crystal cell characterization using rotating polarizers including full-field cell gap thickness measurement,” Proc. SPIE 7522, 75224N (2009).
  9. Y. Zhou, Z. He, and S. Sato, “A novel method determining the cell thickness and twist angle of a twisted nematic cell by Stokes parameter measurement,” Jpn. J. Appl. Phys. 36, 2760–2764 (1997). [CrossRef]
  10. V. Durán, J. Lancis, E. Tajahuerce, and Z. Jaroszewicz, “Cell parameter determination of a twisted-nematic liquid crystal display by single-wavelength polarimetry,” J. Appl. Phys. 97, 043101 (2005). [CrossRef]
  11. P. Yeh, and C. Gu, Optics of Liquid Crystal Display (Wiley, 1999), pp. 129–130.
  12. A. Lien, “The general and simplified Jones matrix representations for the high pretilt twisted nematic cell,” Jpn. J. Appl. Phys. 67, 2853 (1990). [CrossRef]
  13. V. Durán, J. Lancis, E. Tajahuerce, and Z. Jaroszewicz, “Equivalent retarder-rotator approach to on-state twisted nematic liquid crystal displays,” J. Appl. Phys. 99, 113101 (2006). [CrossRef]
  14. S. T. Tang, and H. S. Kwok, “3×3 Matrix for unitary optical systems,” J. Opt. Soc. Am. A 18, 2138–2145 (2001). [CrossRef]
  15. H. Hurwitz, and R. C. Jones, “A new calculus for the treatment of optical systems. II. Proof of three general equivalence theorems,” J. Opt. Soc. Am. 31, 493–499 (1941). [CrossRef]
  16. S. T. Tang, and H. S. Kwok, “Characteristic parameters of liquid crystal cells and their measurements,” J. Disp. Technol. 2, 26–31 (2006). [CrossRef]
  17. C.-J. Yu, C. E. Lin, Y. C. Li, L. D. Chou, J. S. Wu, C. C. Lee, and C. Chou, “Dual-frequency heterodyne ellipsometer for characterizing generalized elliptically birefringent media,” Opt. Express 17, 19213–19224 (2009). [CrossRef]
  18. C.-J. Yu, Y.-T. Tseng, K.-C. Hsu, and C. Chou, “Full-field characterization of a twisted nematic liquid-crystal device using equivalence theorem of a unitary optical system,” Appl. Opt. 51, 238–244 (2012). [CrossRef]
  19. D. H. Goldstein, “Mueller matrix dual-rotating retarder polarimeter,” Appl. Opt. 31, 6676–6683 (1992). [CrossRef]
  20. K. Muraki, M. Tsukiji, A. Takayanagi, and N. Umeda, “Simultaneous measurement of linear and circular birefringence with heterodyne interferometer,” Proc. SPIE 2873, 29–32 (1996). [CrossRef]
  21. B. Wang, “Measurement of circular and linear birefringence in chiral media and optical materials using the photoelastic modulator,” Proc. SPIE 3535, 294–302 (1999). [CrossRef]
  22. C. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9, 780–790 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited