OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 34 — Dec. 1, 2012
  • pp: 8057–8067

Multiwavelength diode-laser absorption spectroscopy using external intensity modulation by semiconductor optical amplifiers

Solon Karagiannopoulos, Edward Cheadle, Paul Wright, Stylianos Tsekenis, and Hugh McCann  »View Author Affiliations


Applied Optics, Vol. 51, Issue 34, pp. 8057-8067 (2012)
http://dx.doi.org/10.1364/AO.51.008057


View Full Text Article

Enhanced HTML    Acrobat PDF (1406 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel opto-electronic scheme for line-of-sight Near-IR gas absorption measurement based on direct absorption spectroscopy (DAS) is reported. A diode-laser-based, multiwavelength system is designed for future application in nonintrusive, high temporal resolution tomographic imaging of H2O in internal combustion engines. DAS is implemented with semiconductor optical amplifiers (SOAs) to enable wavelength multiplexing and to induce external intensity modulation for phase-sensitive detection. Two overtone water transitions in the Near-IR have been selected for ratiometric temperature compensation to enable concentration measurements, and an additional wavelength is used to account for nonabsorbing attenuation. A wavelength scanning approach was used to evaluate the new modulation technique, and showed excellent absorption line recovery. Fixed-wavelength, time-division-multiplexing operation with SOAs has also been demonstrated. To the best of our knowledge this is the first time SOAs have been used for modulation and switching in a spectroscopic application. With appropriate diode laser selection this scheme can be also used for other chemical species absorption measurements.

© 2012 Optical Society of America

OCIS Codes
(250.5980) Optoelectronics : Semiconductor optical amplifiers
(300.1030) Spectroscopy : Absorption

ToC Category:
Spectroscopy

History
Original Manuscript: July 30, 2012
Revised Manuscript: October 22, 2012
Manuscript Accepted: October 22, 2012
Published: November 27, 2012

Citation
Solon Karagiannopoulos, Edward Cheadle, Paul Wright, Stylianos Tsekenis, and Hugh McCann, "Multiwavelength diode-laser absorption spectroscopy using external intensity modulation by semiconductor optical amplifiers," Appl. Opt. 51, 8057-8067 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-34-8057


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Regulation (EC) No. 715/2007 of the European Parliament and of the Council of 20 June 2007 on type approval of motor vehicles with respect to emissions from light passenger and commercial vehicles (Euro 5 and Euro 6) and on access to vehicle repair and maintenance information.
  2. H. Zhao, Homogeneous Charge Compression Ignition (HCCI) and Controlled Autoignition (CAI) Combustion Engines for Automotive Industry (Woodhead, 2007).
  3. H. Zhao and N. Ladommatos, Engine Combustion Instrumentation and Diagnostics (SAE International, 2001).
  4. C. Schultz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75–121 (2005). [CrossRef]
  5. M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998). [CrossRef]
  6. F. Li, X. Yu, H. Gu, Z. Li, Y. Zhao, L. Ma, L. Chen, and X. Chang, “Simultaneous measurements of multiple flow parameters for scramjet characterization using tunable diode-laser sensors,” Appl. Opt. 50, 6697–6707 (2011). [CrossRef]
  7. P. V. Torek, D. L. Hall, T. A. Miller, and M. S. Wooldridge, “H2O absorption spectroscopy for determination of temperature and H2O mole fraction in high-temperature particle synthesis systems,” Appl. Opt. 41, 2274–2284 (2002). [CrossRef]
  8. P. Lundin, E. Krite Svanberg, M. Lewander, L. Cocola, S. Andersson-Engels, J. Jahr, V. Fellman, K. Svanberg, and S. Svanberg, “Non-invasive gas monitoring in newborn infants using diode laser absorption spectroscopy—a case study,” Proc. SPIE 8229, 822903 (2012). [CrossRef]
  9. S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, “Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines,” Proc. Combust. Inst. 28, 587–594 (2000). [CrossRef]
  10. N. Kawahara, E. Tomita, A. Ohtsuki, and Y. Aoyagi, “Cycle-resolved residual gas concentration measurement inside a heavy-duty diesel engine using infrared laser absorption,” Proc. Combust. Inst. 33, 2903–2910 (2011). [CrossRef]
  11. L. A. Kranendonk, J. W. Walewski, T. Kim, and S. T. Sanders, “Wavelength-agile sensor applied for HCCI engine measurements,” Proc. Combust. Inst. 30, 1619–1627 (2005). [CrossRef]
  12. D. W. Mattison, J. B. Jeffries, R. K. Hanson, R. R. Steeper, S. De Zilwa, J. E. Dec, M. Sjoberg, and W. Hwang, “In-cylinder gas temperature and water concentration measurements in HCCI engines using a multiplexed-wavelength diode-laser system: sensor development and initial demonstration,” Proc. Combust. Inst. 31, 791–798 (2007). [CrossRef]
  13. G. B. Rieker, H. Li, X. Liu, J. T. C. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, H. S. Kindle, A. Kakuho, K. R. Sholes, T. Matsuura, and S. Takatani, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” Proc. Combust. Inst. 31, 3041–3049 (2007). [CrossRef]
  14. G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments,” Appl. Opt. 48, 5546–5560 (2009). [CrossRef]
  15. P. Wright, C. A. Garcia-Stewart, S. J. Carey, F. P. Hindle, S. Pegrum, S. Colbourne, P. Turner, W. Hurr, T. Litt, S. C. Murray, S. D. Crossley, K. B. Ozanyan, and H. McCann, “Toward in-cylinder absorption tomography in a production engine,” Appl. Opt. 44, 6578–6592 (2005). [CrossRef]
  16. P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, T. J. Litt, S. C. Murray, K. B. Ozanyan, and H. McCann, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. 158, 2–10 (2010). [CrossRef]
  17. E. M. Cheadle, S. Karagiannopoulos, N. Terzija, P. Wright, K. B. Ozanyan, and H. McCann, “Fuel spray and vapour imaging in a single-cylinder research engine,” presented at the 6th International Symposium on Process Tomography, Cape Town, South Africa, 26–28 March 2012.
  18. M. P. Arroyo and R. K. Hanson, “Absorption measurements of water-vapor concentration, temperature and line-shape parameters using a tunable InGaAsP diode laser,” Appl. Opt. 32, 6104–6116 (1993). [CrossRef]
  19. V. Nagali and R. K. Hanson, “Design of a diode-laser sensor to monitor water vapor in high-pressure combustion gases,” Appl. Opt. 36, 9518–9527 (1997). [CrossRef]
  20. E. Cheadle, S. Karagiannopoulos, P. Wright, N. Terzija, K. Ozanyan, and H. McCann, “Measurement strategies for in-cylinder water imaging in a homogeneous charge compression ignition engine,” in Proceedings of 6th World Congress on Industrial Process Tomography (2010), pp. 1368–1375.
  21. L. R. Rothman, D. Jacquemart, A. Barbe, D. Chris Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005). [CrossRef]
  22. J. T. C. Liu, “Near-infrared diode laser absorption diagnostics for temperature and species in engines,” Ph.D. dissertation (Stanford University, 2004).
  23. X. Liu, X. Zhou, J. B. Jeffries, and R. K. Hanson, “Experimental study of H2O spectroscopic parameters in the near-IR (6940–7440  cm−1) for gas sensing applications at elevated temperature,” J. Quant. Spectrosc. Radiat. Transfer 103, 565–577 (2007). [CrossRef]
  24. M. J. Connelly, Semiconductor Optical Amplifiers (Kluwer, 2002).
  25. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 2002).
  26. P. Urquhart, Advances in Optical Amplifiers (InTech, 2011).
  27. J. Mørk, A. Mecozzi, and G. Eisenstein, “The modulation response of a semiconductor laser amplifier,” IEEE J. Sel. Top. Quantum Electron. 5, 851–860 (1999). [CrossRef]
  28. E. Udvary and T. Berceli, “Linearity and chirp investigations on SOA as an external modulator in SCM systems,” EUMA Special Issue on Microwave Photonics 3, 217–222 (2007).
  29. J. L. Wei, X. Y. Yang, R. P. Giddings, and J. M. Tang, “Colourless adaptively modulated optical OFDM transmitters using SOAs as intensity modulators,” Opt. Express 17, 9012(2009). [CrossRef]
  30. D. C. Kim, B. S. Choi, H. S. Kim, K. S. Kim, K. H. Yoon, O. K. Kwon, and D. K. Oh, “2.5 Gbps direct modulation of reflective semiconductor optical amplifier for wavelength division multiplexing passive optical network colourless sources,” Jpn. J. Appl. Phys. 48, 120209 (2009). [CrossRef]
  31. P. Wright, K. B. Ozanyan, S. J. Carey, and H. McCann, “Design of high-performance photodiode receivers for optical tomography,” IEEE Sens. J. 5, 281–288 (2005). [CrossRef]
  32. G. C. Papen and G. M. Murphy, “Modal noise in multimode fibers under restricted launch conditions,” J. Lightwave Technol. 17, 817–822 (1999). [CrossRef]
  33. R. J. Bartula and S. T. Sanders, “Estimation of signal noise induced by multimode optical fibers,” Opt. Eng. 47, 035002 (2008). [CrossRef]
  34. W. Johnstone, A. J. McGettrick, K. Duffin, A. Cheung, and G. Stewart, “Tunable diode laser spectroscopy for industrial process applications: system characterisation in conventional and new approaches,” IEEE Sens. J. 8, 1079–1087 (2008). [CrossRef]
  35. P. Urquhart, “Transversely coupled fibre Fabry–Perot resonator: theory,” Appl. Opt. 26, 456–463 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited