OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 34 — Dec. 1, 2012
  • pp: 8068–8073

Optical encryption using pseudorandom complex spatial modulation

Tamás Sarkadi and Pál Koppa  »View Author Affiliations


Applied Optics, Vol. 51, Issue 34, pp. 8068-8073 (2012)
http://dx.doi.org/10.1364/AO.51.008068


View Full Text Article

Enhanced HTML    Acrobat PDF (594 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we propose a new (to our knowledge) complex spatial modulation method to encode data pages applicable in double random phase encryption (DRPE) to make the system more resistant to brute-force attack. The proposed modulation method uses data page pixels with random phase and amplitude values with the condition that the intensity of the interference of light from two adjacent pixels should correspond to the encoded information. A differential phase contrast technique is applied to recover the data page at the output of the system. We show that the proposed modulation method can enhance the robustness of the DRPE technique using point spread function analysis. Key space expansion is determined by numeric model calculations.

© 2012 Optical Society of America

OCIS Codes
(200.4560) Optics in computing : Optical data processing
(210.1635) Optical data storage : Coding for optical storage

ToC Category:
Optics in Computing

History
Original Manuscript: July 31, 2012
Revised Manuscript: October 9, 2012
Manuscript Accepted: November 5, 2012
Published: November 27, 2012

Citation
Tamás Sarkadi and Pál Koppa, "Optical encryption using pseudorandom complex spatial modulation," Appl. Opt. 51, 8068-8073 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-34-8068


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Refregier and B. Javidi, “Optical-image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20, 767–769 (1995). [CrossRef]
  2. O. Matoba and B. Javidi, “Encrypted optical storage with angular multiplexing,” Appl. Opt. 38, 7288–7293 (1999). [CrossRef]
  3. T. Nomura and B. Javidi, “Optical encryption system with a binary key code,” Appl. Opt. 39, 4783–4787 (2000). [CrossRef]
  4. X. D. Tan, O. Matoba, T. Shimura, K. Kuroda, and B. Javidi, “Secure optical storage that uses fully phase encryption,” Appl. Opt. 39, 6689–6694 (2000). [CrossRef]
  5. M. Singh, A. Kumar, and K. Singh, “Secure optical system that uses fully phase-based encryption and lithium niobate crystal as phase contrast filter for decryption,” Opt. Laser Technol. 40, 619–624 (2008). [CrossRef]
  6. Z. Liu, S. Li, M. Yang, W. Liu, and S. Liu, “Image encryption based on the random rotation operation in the fractional Fourier transform domains,” Opt. Lasers Eng. 50, 1352–1358 (2012). [CrossRef]
  7. M. Joshi, C. Shakher, and K. Singh, “Fractional Fourier transform based image multiplexing and encryption technique for four-color images using input images as keys,” Opt. Commun. 283, 2496–2505 (2010). [CrossRef]
  8. Z. Liu, S. L. Xu, C. Lin, J. Dai, and S. Liu, “Image encryption scheme by using iterative random phase encoding in gyrator transform domains,” Opt. Lasers Eng. 49, 542–546 (2011). [CrossRef]
  9. D. S. Monaghan, U. Gopinathan, T. J. Naughton, and J. T. Sheridan, “Key-space analysis of double random phase encryption technique,” Appl. Opt. 46, 6641–6647 (2007). [CrossRef]
  10. T. Sarkadi and P. Koppa, “Quantitative security evaluation of optical encryption using hybrid phase- and amplitude-modulated keys,” Appl. Opt. 51, 745–750 (2012). [CrossRef]
  11. T. Ujvári, P. Koppa, M. Lovasz, P. Varhegyi, S. Sajti, E. Lorincz, and P. Richter, “A secure data storage system based on phase-encoded thin polarization holograms,” J. Opt. Pure Appl. Opt. 6, 401–411 (2004). [CrossRef]
  12. P. Koppa, “Phase-to-amplitude data page conversion for holographic storage and optical encryption,” Appl. Opt. 46, 3561–3571 (2007). [CrossRef]
  13. J. C. Dainty, Laser Speckle and Related Phenomena (Springer, 1975).
  14. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer, 2000).
  15. S. B. Wicker and V. K. Bhargava, Reed Solomon Codes and Their Applications (IEEE, 1999).
  16. Z. Liu, M. Yang, W. Liu, S. Li, M. Gong, W. Liu, and S. Liu, “Image encryption algorithm based on the random local phase encoding in gyrator transform domains,” Opt. Commun. 285, 3921–3925 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited