OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 34 — Dec. 1, 2012
  • pp: 8074–8080

Design and experimental investigation of highly efficient resonance-domain diffraction gratings in the visible spectral region

Omri Barlev, Michael A. Golub, Asher A. Friesem, and Menachem Nathan  »View Author Affiliations


Applied Optics, Vol. 51, Issue 34, pp. 8074-8080 (2012)
http://dx.doi.org/10.1364/AO.51.008074


View Full Text Article

Enhanced HTML    Acrobat PDF (639 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Surface-relief resonance-domain diffraction gratings with deep and dense grooves provide considerable changes in light propagation direction, wavefront curvature, and nearly 100% Bragg diffraction efficiency usually attributed only to volume optical holograms. In this paper, we present design, computer simulation, fabrication, and experimental results of binary resonance-domain diffraction gratings in the visible spectral region. Performance of imperfectly fabricated diffraction groove profiles was optimized by controlling the DC and the depth of the grooves. Indeed, more than 97% absolute Bragg diffraction efficiency was measured at the 635 nm wavelength with binary gratings having periods of 520 nm and groove depths of about 1000 nm, fabricated by direct electron-beam lithography and reactive ion etching.

© 2012 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(050.1970) Diffraction and gratings : Diffractive optics
(090.0090) Holography : Holography
(350.3950) Other areas of optics : Micro-optics

ToC Category:
Holography

History
Original Manuscript: August 31, 2012
Manuscript Accepted: October 11, 2012
Published: November 27, 2012

Citation
Omri Barlev, Michael A. Golub, Asher A. Friesem, and Menachem Nathan, "Design and experimental investigation of highly efficient resonance-domain diffraction gratings in the visible spectral region," Appl. Opt. 51, 8074-8080 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-34-8074


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. C. O’Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics: Design, Fabrication, and Test (SPIE, 2004).
  2. B. Kress and P. Meyrueis, Digital Diffractive Optics: An Introduction to Planar Diffractive Optics and Related Technology (Wiley, 2000).
  3. V. A. Soifer and M. A. Golub, Laser Beam Mode Selection by Computer Generated Holograms (CRC, 1994).
  4. R. J. Collier, Optical Holography (Academic, 1971).
  5. J. M. Miller, N. Beaucoudrey, P. Chavel, J. Turunen, and E. Cambril, “Design and fabrication of binary slanted surface-relief gratings for a planar optical interconnection,” Appl. Opt. 36, 5717–5727 (1997). [CrossRef]
  6. J. Turunen, M. Kuittinen, and F. Wyrowski, “Diffractive optics: electromagnetic approach,” in Progress in Optics, E. Wolf, ed. (Elsevier Science, 2000), Vol. XL, pp. 343–388.
  7. M. L. Lee, P. Lalanne, J. Rodier, and E. Cambril, “Wide field-angle behaviour of blazed-binary gratings in the resonance domain,” Opt. Let. 25, 1690–1692 (2000). [CrossRef]
  8. T. Shiono, T. Hamamoto, and K. Takahara, “High-efficiency blazed diffractive optical elements for the violet wavelength fabricated by electron-beam lithography,” Appl. Opt. 41, 2390–2393 (2002). [CrossRef]
  9. T. Clausnitzer, J. Limpert, K. Zoellner, H. Zellmer, H.-J. Fuchs, E.-B. Kley, A. Tunnermann, M. Jupe, and D. Ristau, “Highly efficient transmission gratings in fused silica for chirped-pulse amplification systems,” Appl. Opt. 42, 6934–6938 (2003). [CrossRef]
  10. M. Okano, H. Kikuta, Y. Hirai, K. Yamamoto, and T. Yotsuya, “Optimization of diffraction grating profiles in fabrication by electron-beam lithography,” Appl. Opt. 43, 5137–5142 (2004). [CrossRef]
  11. N. Destouches, A. V. Tishchenko, J. C. Pommier, S. Reynaud, and O. Parriaux, “99% efficiency measured in the 1st order of a resonant grating,” Opt. Express 13, 3230–3235 (2005). [CrossRef]
  12. T. Clausnitzer, T. Kampfe, E. B. Kley, A. Tunnermann, A. V. Tishchenko, and O. Parriau, “High-dispersive dielectric transmission grating with 100% diffraction efficiency,” Opt. Express 16, 5577–5584 (2008). [CrossRef]
  13. M. Oliva, T. Harzendorf, D. Michaelis, U. D. Zeitner, and A. Tünnermann, “Multilevel blazed gratings in resonance domain: an alternative to the classical fabrication approach,” Opt. Express 19, 14735–14745 (2011). [CrossRef]
  14. O. Barlev, M. A. Golub, A. A. Friesem, D. Mahalu, and M. Nathan, “Fabrication and testing of highly efficient resonance domain diffractive optical elements,” Proc. SPIE 8169, 81690D (2011). [CrossRef]
  15. B. Wang, C. Zhou, S. Wang, and J. Feng, “Polarizing beam splitter of a deep-etched fused-silica grating,” Opt. Lett. 32, 1299–1301 (2007). [CrossRef]
  16. H. Cao, C. Zhou, J. Feng, P. Lu, and J. Ma, “Design and fabrication of a polarization-independent wideband transmission fused-silica grating,” Appl. Opt. 49, 4108–4112 (2010). [CrossRef]
  17. K. Ventola, J. Tervo, S. Siitonen, H. Tuovinen, and M. Kuittinen, “High efficiency half-wave retardation in diffracted light by coupled waves,” Opt. Express 20, 4681–4689 (2012). [CrossRef]
  18. M. A. Golub, A. A. Friesem, and L. Eisen, “Bragg properties of efficient surface relief gratings in the resonance domain,” Opt. Commun. 235, 261–267 (2004). [CrossRef]
  19. M. A. Golub and A. A. Friesem, “Effective grating theory for the resonance domain surface relief diffraction gratings,” J. Opt. Soc. Am. A 22, 1115–1126 (2005). [CrossRef]
  20. M. A. Golub and A. A. Friesem, “Analytic design and solutions for resonance domain diffractive optical elements,” J. Opt. Soc. Am. A 24, 687–695 (2007). [CrossRef]
  21. M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72, 1385–1392 (1982). [CrossRef]
  22. L. Li, J. Chandezon, G. Granet, and J.-P. Plumey, “Rigorous and efficient grating-analysis method made easy for optical engineers,” Appl. Opt. 38, 304–313 (1999). [CrossRef]
  23. S. Peng and G. M. Morris, “Efficient implementation of rigorous coupled-wave analysis for surface-relief gratings,” J. Opt. Soc. Am. A 12, 1087–1096 (1995). [CrossRef]
  24. E. Popov and E. G. Loewen, Diffraction Gratings and Applications (Dekker, 1997).
  25. S. D. Wu, T. K. Gaylord, E. N. Glytsis, and Y. M. Wu, “Angular sensitivities of volume gratings for substrate-mode optical interconnects,” Appl. Opt. 44, 4447–4453 (2005). [CrossRef]
  26. M. G. Moharam, T. K. Gaylord, and R. Magnusson, “Criteria for Bragg regime diffraction by phase gratings,” Opt. Commun. 32, 14–18 (1980). [CrossRef]
  27. RSoft Design Group Inc., “DiffractMODTM software code,” www.rsoftdesign.com .
  28. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon, 1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited