OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 34 — Dec. 1, 2012
  • pp: 8102–8110

Open-path atmospheric transmission for a diode-pumped cesium laser

Christopher A. Rice, Gordon E. Lott, and Glen P. Perram  »View Author Affiliations


Applied Optics, Vol. 51, Issue 34, pp. 8102-8110 (2012)
http://dx.doi.org/10.1364/AO.51.008102


View Full Text Article

Enhanced HTML    Acrobat PDF (1354 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A tunable diode laser absorption spectroscopy device was developed to study atmospheric propagation for emerging high-energy laser weapons. The cesium diode-pumped alkali laser operates near 895 nm in the vicinity of several water-vapor absorption lines. Temperature, pressure, and water vapor concentration were determined for 150 m and 1 km open paths with statistical errors of 0.2%. Comparison with meteorological instruments yields agreement for the 1 km path to within 0.6% for temperature, 3.7% for pressure, and 2.4% for concentration.

© 2012 Optical Society of America

OCIS Codes
(010.1320) Atmospheric and oceanic optics : Atmospheric transmittance
(010.3310) Atmospheric and oceanic optics : Laser beam transmission
(140.1340) Lasers and laser optics : Atomic gas lasers
(300.6390) Spectroscopy : Spectroscopy, molecular

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: June 11, 2012
Revised Manuscript: September 12, 2012
Manuscript Accepted: October 25, 2012
Published: November 27, 2012

Citation
Christopher A. Rice, Gordon E. Lott, and Glen P. Perram, "Open-path atmospheric transmission for a diode-pumped cesium laser," Appl. Opt. 51, 8102-8110 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-34-8102


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. F. Krupke, “Diode-pumped alkali laser,” U.S. patent 6,643,311 (23October2001).
  2. W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “Resonance transition 795 nm rubidium laser,” Opt. Lett. 28, 2336–2338 (2003). [CrossRef]
  3. A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, “Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation,” Quantum Electron. 42, 95–98 (2012). [CrossRef]
  4. B. Zhdanov and R. Knize, “Advanced diode-pumped alkali lasers,” Proc. SPIE 7022, 70220J (2008). [CrossRef]
  5. W. Krupke, “Diode pumped alkali lasers (DPALs)—an overview,” Proc. SPIE 7005, 700521 (2008). [CrossRef]
  6. T. Ehrenreich, B. Zhdanov, T. Takekoshi, S. P. Phipps, and R. J. Knize, “Diode pumped caesium laser,” Electron. Lett. 41, 7–9 (2005). [CrossRef]
  7. B. Zhdanov, T. Ehrenreich, and R. Knize, “Highly efficient optically pumped cesium vapor laser,” Opt. Commun. 260, 696 (2006). [CrossRef]
  8. B. Zhdanov and R. Knize, “Diode-pumped 10 W continuous wave cesium laser,” Opt. Lett. 32, 2167–2169 (2007). [CrossRef]
  9. B. Zhdanov, F. Kontur, S. Phipps, F. Hallada, P. Elsbernd, W. Miller, A. Peay, and R. Knize, “Tunable single frequency cesium laser,” Opt. Commun. 280, 161–164 (2007). [CrossRef]
  10. J. Readle, C. Wagner, J. Verdeyen, D. Carroll, and J. Eden, “Lasing in Cs at 894.3 nm pumped by the dissociation of CsAr excimers,” Electron. Lett. 44, 1466–1467 (2008). [CrossRef]
  11. B. Zhdanov, J. Sell, and R. Knize, “Multiple laser diode array pumped Cs laser with 48 W output power,” Electron. Lett. 44, 582–583 (2008). [CrossRef]
  12. B. Zhdanov, M. Shaffer, J. Sell, and R. Knize, “Cesium vapor laser with transverse pumping by multiple laser diode arrays,” Opt. Commun. 281, 5862 (2008). [CrossRef]
  13. B. Zhdanov, M. Shaffer, and R. Knize, “Cs laser with unstable cavity transversely pumped by multiple diode lasers,” Opt. Express 17, 14767–14770 (2009). [CrossRef]
  14. G. Pitz, C. Fox, and G. Perram, “Transfer between the cesium 6P1/22 and 6P3/22 levels induced by collisions with H2, HD, D2, CH4, C2H6, CF4, and C2F6,” Phys. Rev. A 84, 032708 (2011). [CrossRef]
  15. G. Pitz, D. Wertepny, and G. Perram, “Pressure broadening and shift of the cesium D1 transition by the noble gases and N2, H2, HD, D2, CH4, C2H6, CF4, and He3,” Phys. Rev. A 80, 062718 (2009). [CrossRef]
  16. G. A. Pitz, C. D. Fox, and G. P. Perram, “Pressure broadening and shift of the cesium D2 transition by the noble gases and N2, H2, HD, D2, CH4, C2H6, CF4, and He3 with comparison to the D1 transition,” Phys. Rev. A 82, 042502 (2010). [CrossRef]
  17. C. Rice and G. Perram, “Investigation of atmospheric O2X3Σg−−b1Σg+ using open-path tunable diode laser absorption spectroscopy,” Appl. Phys. B (submitted 22, February2012).
  18. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, I. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009). [CrossRef]
  19. T. Le Barbu, I. Vinogradov, G. Durry, O. Korablev, E. Chassefiere, and J. L. Bertaux, “TDLAS a laser diode sensor for the in situ monitoring of H2O, CO2 and their isotopes in the Martian atmosphere,” Adv. Space Res. 38, 718–725(2006). [CrossRef]
  20. G. Durry, J. S. Li, I. Vinogradov, A. Titov, L. Joly, J. Cousin, and T. Decarpenterie, “Near infrared diode laser spectroscopy of C2H2, H2O, CO2 and their isotopologues and the application to TDLAS, a tunable diode laser spectrometer for the Martian PHOBOS-GRUNT space mission,” Appl. Phys. B 99, 339–351 (2010). [CrossRef]
  21. D. M. Sonnenfroh, W. J. Kessler, J. C. Magill, B. L. Upschulte, M. G. Allen, and J. D. W. Barrick, “In-situ sensing of tropospheric water vapor using an airborne near-IR diode laser hygrometer,” Appl. Phys. B 67, 275–282 (1998). [CrossRef]
  22. G. S. Diskin, J. R. Podolske, G. W. Sachse, and T. A. Slate, “Open-path airborne tunable diode laser hygrometer,” Proc. SPIE 4817, 196–204 (2002). [CrossRef]
  23. G. Durry and G. Megie, “In situ measurements of H2O from a stratospheric balloon by diode laser direct-differential absorption spectroscopy at 1.39 mm,” Appl. Opt. 39, 5601–5608 (2000). [CrossRef]
  24. G. Durry and G. Megie, “Atmospheric CH4 and H2O monitoring with near-infrared InGaAs laser diodes by the SDLA, a balloonborne spectrometer for tropospheric and stratospheric in situ measurements,” Appl. Opt. 38, 7342–7354 (1999). [CrossRef]
  25. G. Durry, A. Hauchecorne, J. Ovarlez, H. Ovarlez, I. Pouchet, V. Zeninari, and B. Parvitte, “In situ measurement of H2O and CH4 with telecommunication laser diodes in the lower stratosphere: dehydration and indication of a tropical air intrusion at mid-latitudes,” J. Atmos. Chem. 43, 175–194 (2002). [CrossRef]
  26. G. Durry, T. Danguy, and I. Pouchet, “Open multipass absorption cell for in situ monitoring of stratospheric trace gas with telecommunication laser diodes,” Appl. Opt. 41, 424–433 (2002). [CrossRef]
  27. W. Gurlit, R. Zimmermann, C. Giesemann, T. Fernholz, V. Ebert, J. Wolfrum, U. Platt, and J. P. Burrows, “Lightweight diode laser spectrometer CHILD (compact high-altitude in-situ laser diode) for balloonborne measurements of water vapor and methane,” Appl. Opt. 44, 94–102 (2005). [CrossRef]
  28. S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, and V. Ebert, “Absolute, high resolution water transpiration rate measurements on single plant leaves via tunable diode laser absorption spectroscopy (TDLAS) at 1.37 μm,” Appl. Phys. B. 92, 393–401 (2008). [CrossRef]
  29. K. Wunderle, S. Wagner, I. Pasti, R. Pieruschka, U. Rascher, U. Schurr, and V. Ebert, “Distributed feedback diode laser spectrometer at 2.7  μm for sensitive, spatially resolved H2O vapor detection,” Appl. Opt. 48, B172–B182 (2009). [CrossRef]
  30. C. Rice and G. Perram, “A tunable diode laser absorption system for long path atmospheric transmission and high energy laser applications,” Proc. SPIE 7924, 79240K (2011). [CrossRef]
  31. S. Clough, M. Shephard, E. Mlawer, J. Delamere, M. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, “Atmospheric radiative transfer modeling: a summary of the AER codes,” J. Quant. Spectrosc. Radiat. Transfer 91, 233–244 (2005). [CrossRef]
  32. A. Gourevitch, G. Venus, V. Smirnov, D. A. Hostutler, and L. Glebov, “Continuous wave, 30 W laser-diode bar with 10 GHz linewidth for Rb laser pumping,” Opt. Lett. 33, 702–704 (2008). [CrossRef]
  33. G. Lott, “Cesium absorption spectrum perturbed by argon: observation of non-Lorentzian wing properties,” Master’s thesis (Air Force Institute of Technology, 2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited