OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 34 — Dec. 1, 2012
  • pp: 8111–8131

RAMSES: German Meteorological Service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements

Jens Reichardt, Ulla Wandinger, Volker Klein, Ina Mattis, Bernhard Hilber, and Robert Begbie  »View Author Affiliations


Applied Optics, Vol. 51, Issue 34, pp. 8111-8131 (2012)
http://dx.doi.org/10.1364/AO.51.008111


View Full Text Article

Enhanced HTML    Acrobat PDF (4120 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The Raman lidar for atmospheric moisture sensing (RAMSES) for unattended, continuous multiparameter atmospheric profiling is presented. A seeded frequency-tripled Nd:YAG laser serves as the light source. A nine-channel polychromator, nonfiber coupled to the main telescope (790 mm diameter), is used for far-range measurements. Near-range observations are performed with a three-channel polychromator, fiber coupled to a secondary telescope (200 mm diameter). Measurement parameters are water-vapor mixing ratio (MR), temperature, and the optical particle parameters, which are extinction coefficient, backscatter coefficient, lidar ratio, and depolarization ratio at 355 nm. Profiles of water-vapor MR are measured from close to the surface up to 14 km at night and 5 km during the day under favorable atmospheric conditions in 20 min. Temperature profiles of the troposphere and lower stratosphere are determined with the rotational-Raman technique. For the detection of the rotational Raman signals, a new beamsplitter/interference-filter experimental setup is implemented that is compact, robust, and easy to align. Furthermore, the polychromator design allows two independent methods for calibrating measurements of depolarization ratio. RAMSES optical design concept and experimental setup are detailed, and a description of the operational near-real-time data evaluation software is given. A multiday observation is discussed to illustrate the measurement capabilities of RAMSES.

© 2012 Optical Society of America

OCIS Codes
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(010.3920) Atmospheric and oceanic optics : Meteorology
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.3640) Remote sensing and sensors : Lidar
(290.1090) Scattering : Aerosol and cloud effects
(280.6780) Remote sensing and sensors : Temperature

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: March 30, 2012
Revised Manuscript: July 13, 2012
Manuscript Accepted: August 21, 2012
Published: November 28, 2012

Citation
Jens Reichardt, Ulla Wandinger, Volker Klein, Ina Mattis, Bernhard Hilber, and Robert Begbie, "RAMSES: German Meteorological Service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements," Appl. Opt. 51, 8111-8131 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-34-8111


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. Wandinger, “Raman lidar,” in Lidar: Range–Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 241–271.
  2. A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, and W. Michealis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992). [CrossRef]
  3. D. N. Whiteman, S. H. Melfi, and R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earths atmosphere,” Appl. Opt. 31, 3068–3082(1992). [CrossRef]
  4. J. Reichardt, U. Wandinger, M. Serwazi, and C. Weitkamp, “Combined Raman lidar for aerosol, ozone, and moisture measurements,” Opt. Eng. 35, 1457–1465 (1996). [CrossRef]
  5. J. E. M. Goldsmith, F. H. Blair, S. E. Bisson, and D. D. Turner, “Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols,” Appl. Opt. 37, 4979–4990 (1998). [CrossRef]
  6. V. Sherlock, A. Garnier, A. Hauchecorne, and P. Keckhut, “Implementation and validation of a Raman lidar measurement of middle and upper tropospheric water vapor,” Appl. Opt. 38, 5838–5850 (1999). [CrossRef]
  7. D. Althausen, D. Müller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, and S. Zörner, “Scanning 6-wavelength 11-channel aerosol lidar,” J. Atmos. Ocean. Technol. 17, 1469–1482 (2000). [CrossRef]
  8. T. Leblanc, I. S. McDermid, and R. A. Aspey, “First-year operation of a new water vapor Raman lidar at the JPL Table Mountain Facility, California,” J. Atmos. Ocean. Technol. 25, 1454–1462 (2008). [CrossRef]
  9. P. Di Girolamo, D. Summa, and R. Ferretti, “Multiparameter Raman lidar measurements for the characterization of a dry stratospheric intrusion event,” J. Atmos. Ocean. Technol. 26, 1742–1762 (2009). [CrossRef]
  10. A. Apituley, K. M. Wilson, C. Potma, H. Volten, and M. de Graaf, “Performance assessment and application of Caeli—a high-performance Raman lidar for diurnal profiling of water vapour, aerosols and clouds,” in Proceedings of the 8th International Symposium on Tropospheric Profiling: Integration of Needs, Technologies and Applications, A. Apituley, H. W. J. Russchenberg, and W. A. A. Monna, eds. (2009), paper S06-O10.
  11. T. Leblanc, T. D. Walsh, I. S. McDermid, G. C. Toon, J.-F. Blavier, B. Haines, W. G. Read, B. Herman, E. Fetzer, S. Sander, T. Pongetti, D. N. Whiteman, T. G. McGee, L. Twigg, G. Sumnicht, D. Venable, M. Calhoun, A. Dirisu, D. Hurst, A. Jordan, E. Hall, L. Miloshevich, H. Vömel, C. Straub, N. Kampfer, G. E. Nedoluha, R. M. Gomez, K. Holub, S. Gutman, J. Braun, T. Vanhove, G. Stiller, and A. Hauchecorne, “Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE)-2009: overview of campaign operations and results,” Atmos. Meas. Tech. 4, 2579–2605 (2011). [CrossRef]
  12. T. Dinoev, P. Ristori, Y. Arshinov, S. Bobrovnikov, I. Serikov, B. Calpini, H. van den Bergh, and V. Simeonov, “Meteorological water vapor Raman lidar—advances,” Proc. SPIE 6367, U98 (2006).
  13. D. Engelbart, J. Reichardt, I. Mattis, U. Wandinger, V. Klein, A. Meister, B. Hilber, and V. Jaenisch, “RAMSES—German Meteorological Service Raman lidar for atmospheric moisture sensing,” in Reviewed and Revised Papers Presented at the 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (2006), pp. 683–686.
  14. F. H. Berger, J. Reichardt, A. Beljaars, J. Güldner, and C. Heret, “Evaluation of modeled water vapour profiles using Raman lidar data,” in Proceedings of the 8th International Symposium on Tropospheric Profiling: Integration of Needs, Technologies and Applications, A. Apituley, H. W. J. Russchenberg, and W. A. A. Monna, eds. (2009), paper S07-O05.
  15. H. Woick, S. Dewitte, A. Feijt, A. Gratzki, P. Hechler, R. Hollmann, K.-G. Karlsson, V. Laine, P. Löwe, H. Nitsche, M. Werscheck, and G. Wollenweber, “The Satellite Application Facility on climate monitoring,” Adv. Space Res. 30, 2405–2410 (2002). [CrossRef]
  16. D. J. Seidel, F. H. Berger, H. J. Diamond, J. Dykema, D. Goodrich, F. Immler, W. Murray, T. Peterson, D. Sisterson, M. Sommer, P. Thorne, H. Vömel, and J. Wang, “Reference upper-air observations for climate: rationale, progress, and plans,” Bull. Am. Meteorol. Soc. 90, 361–369 (2009). [CrossRef]
  17. J. Reichardt, D. Engelbart, U. Wandinger, I. Mattis, V. Klein, and B. Hilber, “Expansion of the German Meteorological Service Raman Lidar RAMSES,” in Proceedings of the 8th International Symposium on Tropospheric Profiling: Integration of Needs, Technologies and Applications, A. Apituley, H. W. J. Russchenberg, and W. A. A. Monna, eds. (2009), paper S06-P06.
  18. J. Reichardt, R. Begbie, U. Wandinger, V. Klein, B. Hilber, and D. Engelbart, “First water vapor and cloud measurements with the new far-range receiver of the German Meteorological Service Raman lidar RAMSES,” in Proceedings of the 25th International Laser Radar Conference, G. Matvienko and A. Zemlyanov, eds. (2010), pp. 1179–1182.
  19. R. K. Newsom, D. D. Turner, B. Mielke, M. Clayton, R. Ferrare, and C. Sivaraman, “Simultaneous analog and photon counting detection for Raman lidar,” Appl. Opt. 48, 3903–3914 (2009). [CrossRef]
  20. V. Simeonov, G. Larcheveque, P. Quaglia, H. van den Bergh, and B. Calpini, “Influence of the photomultiplier tube spatial uniformity on lidar signals,” Appl. Opt. 38, 5186–5190 (1999). [CrossRef]
  21. V. Freudenthaler, “Effects of spatially inhomogeneous photomultiplier sensitivity on lidar signals and remedies,” in Proceedings of the 22nd International Laser Radar Conference (ESA Publications Division, 2004), SP-561, pp. 37–40.
  22. D. N. Whiteman, I. Veselovskii, M. Cadirola, K. Rush, J. Comer, J. R. Potter, and R. Tola, “Demonstration measurements of water vapor, cirrus clouds, and carbon dioxide using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 24, 1377–1388 (2007). [CrossRef]
  23. J. M. Alvarez, M. A. Vaughan, C. A. Hostetler, W. H. Hunt, and D. M. Winker, “Calibration technique for polarization-sensitive lidars,” J. Atmos. Ocean. Technol. 23, 683–699 (2006). [CrossRef]
  24. J. Reichardt, R. Baumgart, and T. J. McGee, “Three-signal method for accurate measurements of depolarization ratio with lidar,” Appl. Opt. 42, 4909–4913 (2003). [CrossRef]
  25. J. Reichardt, “Raman backscatter-coefficient spectra of cirrus ice,” in Reviewed and Revised Papers of the 26th International Laser Radar Conference, A. Papayannis, D. Balis, and V. Amiridis, eds. (2012), pp. 387–390.
  26. I. Mattis and V. Jaenisch, “Automated Lidar Data Analyzer (ALDA) for RAMSES—the autonomously operating German Meteorological Service Raman lidar for atmospheric moisture sensing,” in Reviewed and Revised Papers Presented at the 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (2006), pp. 215–218.
  27. D. Whiteman, “Examination of the traditional Raman lidar technique. I. Evaluating the temperature-dependent lidar equations,” Appl. Opt. 42, 2571–2592 (2003). [CrossRef]
  28. L. Elterman, “UV, visible, and IR attenuation for altitudes to 50 km, 1968,” environmental research papers AFCRL-68-0153, Air Force Cambridge Research Laboratories, L. G. Hanscom Field, Bedford, Massachusetts (1968).
  29. P. M. Teillet, “Rayleigh optical depth comparisons from various sources,” Appl. Opt. 29, 1897–1900 (1990). [CrossRef]
  30. A. Behrendt and J. Reichardt, “Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator,” Appl. Opt. 39, 1372–1378 (2000). [CrossRef]
  31. A. Ansmann and D. Müller, “Lidar and atmospheric aerosol particles,” in Lidar: Range–Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 105–141.
  32. A. Ansmann, U. Wandinger, O. Le Rille, D. Lajas, and A. Straume, “Particle backscatter and extinction profiling with the spaceborne HSR Doppler lidar ALADIN: methodology and simulations,” Appl. Opt. 46, 6606–6622 (2007). [CrossRef]
  33. D. N. Whiteman, K. Rush, S. Rabenhorst, W. Welch, M. Cadirola, G. McIntire, F. Russo, M. Adam, D. Venable, R. Connell, I. Veselovskii, R. Forno, B. Mielke, B. Stein, T. Leblanc, S. McDermid, and H. Vömel, “Airborne and ground-based measurements using a high-performance Raman lidar,” J. Atmos. Ocean. Technol. 27, 1781–1801 (2010). [CrossRef]
  34. H. Vömel, D. E. David, and K. Smith, “Accuracy of tropospheric and stratospheric water vapor measurements by the cryogenic frost point hygrometer: Instrumental details and observations,” J. Geophys. Res. 112, D08305 (2007). [CrossRef]
  35. J. Reichardt, S. Reichardt, R.-F. Lin, M. Hess, T. J. McGee, and D. O. Starr, “Optical-microphysical cirrus model,” J. Geophys. Res. 113, D22201 (2008). [CrossRef]
  36. J. Reichardt and S. Reichardt, “Determination of cloud effective particle size from the multiple-scattering effect on lidar integration-method temperature measurements,” Appl. Opt. 45, 2796–2804 (2006). [CrossRef]
  37. J. Reichardt, M. Hess, and A. Macke, “Lidar inelastic multiple-scattering parameters of cirrus particle ensembles determined with geometrical-optics crystal phase functions,” Appl. Opt. 39, 1895–1910 (2000). [CrossRef]
  38. U. Wandinger, “Multiple-scattering influence on extinction- and backscatter-coefficient measurements with Raman and high-spectral-resolution lidars,” Appl. Opt. 37, 417–427 (1998). [CrossRef]
  39. M. Wirth, A. Fix, G. Ehret, J. Reichardt, R. Begbie, D. Engelbart, H. Vömel, B. Calpini, G. Romanens, A. Apituley, K. M. Wilson, H. Vogelmann, and T. Trickl, “Intercomparison of airborne water vapour DIAL measurements with ground based remote sensing and radiosondes within the framework of LUAMI 2008,” in Proceedings of the 8th International Symposium on Tropospheric Profiling: Integration of Needs, Technologies and Applications, A. Apituley, H. W. J. Russchenberg, and W. A. A. Monna, eds. (2009), paper S07-P01.
  40. M. Wirth, DLR Oberpfaffenhofen, Weßling, Germany, personal communication (2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited