OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 34 — Dec. 1, 2012
  • pp: 8141–8146

Effects of laser pulse sequence on laser-induced soil plasma emission

Jinzhong Chen, Zhenyu Chen, Jiang Sun, Xu Li, Zechao Deng, and Yinglong Wang  »View Author Affiliations

Applied Optics, Vol. 51, Issue 34, pp. 8141-8146 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (665 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this study, we investigated the effects of a sequence of laser pulses on the plasma emission intensity, plasma temperature, and electron density of laser-induced soil plasma. The experimental results indicate that the plasma radiation was gradually strengthened as the laser-pulse sequence progressed. The theoretical results show that the spectral line intensity and spectral signal-to-background ratio of the elements Fe, Mn, K, and Ti were strongest for plasma from the sixth laser pulse. These data suggest that repeatedly ablating the same surface position of a soil sample with a sequence of laser pulses can enhance the laser-induced breakdown spectroscopy signal.

© 2012 Optical Society of America

OCIS Codes
(140.3440) Lasers and laser optics : Laser-induced breakdown
(300.2140) Spectroscopy : Emission
(350.5400) Other areas of optics : Plasmas
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

ToC Category:
Lasers and Laser Optics

Original Manuscript: June 28, 2012
Revised Manuscript: October 3, 2012
Manuscript Accepted: October 26, 2012
Published: November 28, 2012

Jinzhong Chen, Zhenyu Chen, Jiang Sun, Xu Li, Zechao Deng, and Yinglong Wang, "Effects of laser pulse sequence on laser-induced soil plasma emission," Appl. Opt. 51, 8141-8146 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
  2. P. Inakollu, T. Philip, A. K. Rai, F.-Y. Yueh, and J. P. Singh, “A comparative study of laser induced breakdown spectroscopy analysis for element concentrations in aluminum alloy using artificial neural networks and calibration methods,” Spectrochim. Acta B 64, 99–104 (2009). [CrossRef]
  3. W. T. Y. Mohamed, “Improved LIBS limit of detection of Be, Mg, Si, Mn, Fe and Cu in aluminum alloy samples using a portable Echelle spectrometer with ICCD camera,” Opt. Laser Technol. 40, 30–38 (2008). [CrossRef]
  4. M. Dzyubenko, S. Kolpakov, D. Kulishenko, and A. Priyomko, “Rapid analysis of emission spectra for gold alloys,” Appl. Spectrosc. 77, 279–284 (2010). [CrossRef]
  5. G. P. Gupta, B. M. Suri, A. Verma, M. Sundararaman, V. K. Unnikrishnan, K. Alti, V. B. Kartha, and C. Santhosh, “Quantitative elemental analysis of nickel alloys using calibration-based laser-induced breakdown spectroscopy,” J. Alloys Compd. 509, 3740–3745 (2011). [CrossRef]
  6. S. Hamzaoui, R. Khleifia, N. Jaïdane, and Z. Ben Lakhdar, “Quantitative analysis of pathological nails using laser-induced breakdown spectroscopy (LIBS) technique,” Laser. Med. Sci. 26, 79–83 (2011). [CrossRef]
  7. R. A. Multari, D. A. Cremers, J. M. Dupre, and J. E. Gustafson, “The use of laser-induced breakdown spectroscopy for distinguishing between bacterial pathogen species and strains,” Appl. Spectrosc. 64, 750–759 (2010). [CrossRef]
  8. A. Erdem, A. Çilingiroğlu, A. Giakoumaki, M. Castanys, E. Kartsonaki, C. Fotakis, and D. Anglos, “Characterization of Iron age pottery from eastern Turkey by laser- induced breakdown spectroscopy (LIBS),” J. Archaeol. Sci. 35, 2486–2494 (2008). [CrossRef]
  9. L. Caneve, A. Diamanti, F. Grimaldi, G. Palleschi, V. Spizzichino, and F. Valentini, “Analysis of fresco by laser induced breakdown spectroscopy,” Spectrochim. Acta B 65, 702–706 (2010). [CrossRef]
  10. R. S. Harmon, J. Remus, N. J. McMillan, C. McManus, L. Collins, J. L. Gottfried, F. C. DeLucia, and A. W. Miziolek, “LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and discrimination of minerals,” Appl. Geochem. 24, 1125–1141 (2009). [CrossRef]
  11. J. L. Gottfried, R. S. Harmon, F. C. De Lucia, and A. W. Miziolek, “Multivariate analysis of laser-induced breakdown spectroscopy chemical signatures for geomaterial classification,” Spectrochim. Acta B 64, 1009–1019 (2009). [CrossRef]
  12. I. Rauschenbach, E. K. Jessberger, S. G. Pavlov, and H. W. Hübers, “Miniaturized laser-induced breakdown spectroscopy for the in-situ analysis of the Martian surface: calibration and quantification,” Spectrochim. Acta B 65, 758–768 (2010). [CrossRef]
  13. M. D. Dyar, J. M. Tucker, S. Humphries, S. M. Clegg, R. C. Wiens, and M. D. Lane, “Strategies for Mars remote laser-induced breakdown spectroscopy analysis of sulfur in geological samples,” Spectrochim. Acta B 66, 39–56 (2011). [CrossRef]
  14. X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91, 081501–081503 (2007). [CrossRef]
  15. A. M. Popov, F. Colao, and R. Fantoni, “Enhancement of LIBS signal by spatially confining the laser-induced plasma,” J. Anal. At. Spectrom. 24, 602–604 (2009). [CrossRef]
  16. A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25, 837–848 (2010). [CrossRef]
  17. D. Santos, L. C. Nunes, L. C. Trevizan, Q. Godoi, F. O. Leme, W. B. Braga, and F. José Krug, “Evaluation of laser induced breakdown spectroscopy for cadmium determination in soils,” Spectrochim. Acta B 64, 1073–1078 (2009). [CrossRef]
  18. G. S. Senesi, M. D. Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. D. Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109, 413–420 (2009). [CrossRef]
  19. A. Ismaël, B. Bousquet, K. Michel-Le Pierrès, G. Travaillé, L. Canioni, and S. Roy, “In situ semi-quantitative analysis of polluted soils by laser-induced breakdown spectroscopy (LIBS),” Appl. Spectrosc. 65, 467–473 (2011). [CrossRef]
  20. R. Ahmed and M. A. Baig, “A comparative study of single and double pulse laser induce breakdown spectroscopy,” J. Appl. Phys. 106, 033307 (2009). [CrossRef]
  21. M. Corsi, G. Cristoforetti, M. Hidalgo, D. Iriarte, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Effect of laser-induced crater depth in laser-induced breakdown spectroscopy emission features,” Appl. Spectrosc. 59, 853–860 (2005). [CrossRef]
  22. National Institute of Standards and Technology Physical Measurement Laboratory, “NIST Atomic Spectra Database,” http://physics.nist.gov/PhysRefData/ASD/lines_form.html .
  23. W. Tawfik, Y. Mohamed, and A. Askar, “Study of the matrix effect on the plasma characterization of heavy elements in soil sediments using LIBS with a portable Echell spectrometer,” Prog. Elem. Part. Cosmic Ray Phys. 1, 47–53 (2007).
  24. H. R. Griem, Principles of Plasma Spectroscopy (Cambridge University, 1997).
  25. H. R. Griem, Plasma Spectroscopy (McGraw-Hill, 1964).
  26. K. Song, H. Cha, J. Lee, and Y. Lee, “Investigation of the line-broadening mechanism for laser-induced copper plasma by time-resolved laser-induced breakdown spectroscopy,” Microchem. J. 63, 53–60 (1999). [CrossRef]
  27. O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000). [CrossRef]
  28. J. E. Sansonetti and W. C. Martin, “Handbook of basic atomic spectroscopic data,” J. Phys. Chem. Ref. Data 34, 1559–2259 (2005). [CrossRef]
  29. S. Yao, J. Lu, K. Chen, S. Pan, J. Li, and M. Dong, “Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases,” Appl. Surf. Sci. 257, 3103–3110 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited