OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 34 — Dec. 1, 2012
  • pp: 8147–8158

Ho:YAG absorption cross sections from 1700 to 2200 nm at 83, 175, and 295 K

David C. Brown, Victoria Envid, and Jason Zembek  »View Author Affiliations


Applied Optics, Vol. 51, Issue 34, pp. 8147-8158 (2012)
http://dx.doi.org/10.1364/AO.51.008147


View Full Text Article

Enhanced HTML    Acrobat PDF (1051 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have obtained absorption spectroscopic cross sections as a function of wavelength for the laser material Ho:YAG at 295, 175, and 83 K, in the spectral range from 1700 to 2200 nm. The absorption range corresponds to I85I75 transitions from the ground state to the first excited state amenable to direct pumping by laser diodes and Tm fiber lasers. The data allow a direct comparison of the absorption cross-section intensities and linewidths as temperature is lowered from room temperature to cryogenic temperatures. Universal absorption curves and numerical tables are presented for pump sources that are assumed to have a Gaussian spectral lineshape, as a function of center wavelength, bandwidth, and optical density (doping density×penetration depth), at 295 and 83 K. Curves and tables are presented for both 295 and 83 K and may be used to optimize the pump absorption and laser efficiency.

© 2012 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3460) Lasers and laser optics : Lasers
(140.3580) Lasers and laser optics : Lasers, solid-state

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: September 5, 2012
Manuscript Accepted: October 15, 2012
Published: November 28, 2012

Citation
David C. Brown, Victoria Envid, and Jason Zembek, "Ho:YAG absorption cross sections from 1700 to 2200 nm at 83, 175, and 295 K," Appl. Opt. 51, 8147-8158 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-34-8147


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “165 W cryogenically cooled Yb:YAG laser,” Opt. Lett. 29, 2154–2156 (2004). [CrossRef]
  2. D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300 W cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 41, 1274–1277 (2005). [CrossRef]
  3. S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B. 80, 635–638 (2005). [CrossRef]
  4. D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, and J. W. Kuper, “Kilowatt class high-power cw Yb:YAG cryogenic laser,” Proc. SPIE 6952, 69520K (2008). [CrossRef]
  5. D. C. Brown, J. M. Singley, K. Kowalewski, J. Guelzow, and V. Envid, “High sustained average power cw and ultrafast Yb:YAG near-diffraction-limited cryogenic solid-state laser,” Opt. Express 18, 24770–24792 (2010). [CrossRef]
  6. J. G. Manni, J. D. Hybl, D. Rand, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “100 W q-switched cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 46, 95–98 (2010). [CrossRef]
  7. K. H. Hong, C. J. Lai, A. Siddiqui, and F. X. Kartner, “130 W picosecond green laser based on a frequency-doubled hybrid cryogenic Yb:YAG amplifier,” Opt. Express 17, 16911–16919 (2009). [CrossRef]
  8. D. C. Brown, K. Kowalewski, V. Envid, J. Zembek, and B. Canale, “Cryogenic Yb:YAG picosecond laser with high average power visible and ultraviolet harmonic generation,” Proc. SPIE 8381, 83810T (2012). [CrossRef]
  9. D. C. Brown, S. Tornegård, K. Kowalewski, V. Envid, and J. Zembek, “High average power—high peak power cryogenic Yb:YAG lasers for pumping Ti:Sapphire and OPCPA lasers,” Proc. SPIE 8381, 83810R (2012). [CrossRef]
  10. D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 587–599 (2005). [CrossRef]
  11. T. Y. Fan, D. J. Ripin, and R. L. Aggarwal, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 448–459 (2007). [CrossRef]
  12. J. I. Mackenzie, W. O. S. Bailey, J. W. Kim, L. Pearson, D. Y. Shen, Y. Yang, and W. A. Clarkson, “Tm:fiber laser in-band pumping a cryogenically-cooled Ho:YAG laser,” Proc. SPIE 7193, 71931H (2009). [CrossRef]
  13. B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in Y3Al5O12 and Lu3Al5O12,” J. Phys. Chem. Solids 67, 1567–1582 (2006). [CrossRef]
  14. A. A. Kaminskii, Crystalline Lasers: Physical Processes and Operating Schemes (CRC Press, 1996), p. 174.
  15. D. C. Brown, R. L. Cone, T. Sun, and R. W. Equall, “Yb:YAG absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11, 604–612 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited