OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 34 — Dec. 1, 2012
  • pp: 8159–8168

Scattering from an elliptical cylinder by using the vectorial complex ray model

Keli Jiang, Xiang’e Han, and Kuan Fang Ren  »View Author Affiliations


Applied Optics, Vol. 51, Issue 34, pp. 8159-8168 (2012)
http://dx.doi.org/10.1364/AO.51.008159


View Full Text Article

Enhanced HTML    Acrobat PDF (1188 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The vectorial complex ray model (VCRM) is applied to the light scattering of an elliptical cylinder illuminated by a plane wave. In the VCRM, all waves are described by vectorial complex rays, and the scattering intensities are computed by the superposition of the complex amplitudes of the vectorial rays. The significant merit of this approach is that the wave properties are integrated in the ray model such that the divergence/convergence of the wave each time it encounters a dioptric surface is deduced by the wavefront curvature equation, and the phase shifts due to the focal lines are determined directly by the curvature of the wavefront. The approach is particularly suitable for a large cylinder with an elliptical cross section.

© 2012 Optical Society of America

OCIS Codes
(080.0080) Geometric optics : Geometric optics
(260.3160) Physical optics : Interference
(290.5850) Scattering : Scattering, particles
(290.5825) Scattering : Scattering theory
(080.7343) Geometric optics : Wave dressing of rays

ToC Category:
Scattering

History
Original Manuscript: August 27, 2012
Revised Manuscript: October 22, 2012
Manuscript Accepted: October 24, 2012
Published: November 28, 2012

Citation
Keli Jiang, Xiang’e Han, and Kuan Fang Ren, "Scattering from an elliptical cylinder by using the vectorial complex ray model," Appl. Opt. 51, 8159-8168 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-34-8159


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Girasole, H. Bultynck, G. Gouesbet, G. Gréhan, F. Le Meur, J. N. Le Toulouzan, J. Mroczka, K. F. Ren, C. Rozé, and D. Wysoczanski, “Cylindrical fibre orientation analysis by light scattering. Part 1: numerical aspects,” Part. Part. Syst. Charact. 14, 163–174 (1997).
  2. T. Girasole, G. Gouesbet, G. Gréhan, J. N. Le Toulouzan, J. Mroczka, K. F. Ren, and D. Wysoczanski, “Cylindrical fiber orientation analysis by light scattering. Part 2: experimental aspects,” Part. Part. Syst. Charact. 14, 211–218 (1997).
  3. D. Lebrun, S. Belaid, C. Özkul, K. F. Ren, and G. Gréhan, “Enhancement of wire diameter measurements: comparison between Fraunhofer diffraction and Lorenz–Mie theory,” Opt. Eng. 35, 946–950 (1996). [CrossRef]
  4. X. Han, K. F. Ren, Z. Wu, F. Corbin, G. Gouesbet, and G. Gréhan, “Characterization of initial disturbances in liquid jet by rainbow sizing,” Appl. Opt. 37, 8498–8503 (1998). [CrossRef]
  5. S. S. Seker and G. Apaydin, “Light scattering by thin curved dielectric surface and cylinder,” in Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2009), pp. I-29–I-32.
  6. C. A. Valagiannopoulos, “Electromagnetic scattering of the field of a metamaterial slab antenna by an arbitrarily positioned cluster of metallic cylinders,” Progress Electromagn. Res. 114, 51–66 (2011).
  7. M. Yamada, A. Tomoe, and H. Takara, “Light scattering characteristics of hole formed by fibre fuse,” Electron. Lett. 48, 519–520 (2012). [CrossRef]
  8. C. Yeh, “Backscattering cross section of a dielectric elliptical cylinder,” J. Opt. Soc. Am. 55, 309–312 (1965). [CrossRef]
  9. J. J. Bowman, T. B. A. Senior, and P. L. E. Uslenghi, Electromagnetic and Acoustic Scattering by Simple Shapes (Taylor & Francis, 1988).
  10. A. K. Hamid and F. R. Cooray, “Scattering by a perfect electromagnetic conducting elliptic cylinder,” PIER Lett. 10, 59–67 (2009).
  11. V. V. Varadan, “Scattering matrix for elastic waves. II. Application to elliptic cylinders,” J. Acoust. Soc. Am. 63, 1014–1024 (1978). [CrossRef]
  12. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1957).
  13. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  14. J. A. Lock and C. L. Adler, “Debye-series analysis of the first-order rainbow produced in scattering of a diagonally incident plane wave by a circular cylinder,” J. Opt. Soc. Am. A 14, 1316–1328 (1997). [CrossRef]
  15. R. Li, X. Han, H. Jiang, and K. F. Ren, “Debye series of normally incident plane wave scattering by an infinite multi-layered cylinder,” Appl. Opt. 45, 6255–6262 (2006). [CrossRef]
  16. R. Li, X. Han, and K. F. Ren, “Generalized Debye series expansion of electromagnetic plane wave scattering by an infinite multilayered cylinder at oblique incidence,” Phys. Rev. E 79, 036602 (2009). [CrossRef]
  17. K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in GLMT-framework, formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997). [CrossRef]
  18. G. Gouesbet, K. F. Ren, L. Mees, and G. Gréhan, “Cylindrical localized approximation to speed up computations for Gaussian beams in the generalized Lorenz–Mie theory for cylinders, with arbitrary location and orientation of the scatterer,” Appl. Opt. 38, 2647–2665 (1999). [CrossRef]
  19. L. Mees, K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation, numerical results,” Appl. Opt. 38, 1867–1876 (1999). [CrossRef]
  20. J. A. Lock, “Scattering of a diagonally incident focused Gaussian beam by an infinitely long homogeneous circular cylinder,” J. Opt. Soc. Am. A 14, 640–652 (1997). [CrossRef]
  21. G. Gouesbet and L. Mees, “Generalized Lorenz–Mie theory for infinitely long elliptical cylinders,” J. Opt. Soc. Am. A 16, 1333–1341 (1999). [CrossRef]
  22. G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “Localized approximation for Gaussian beams in elliptical cylinder coordinates,” Appl. Opt. 39, 1008–1025 (2000). [CrossRef]
  23. G. Gouesbet, L. Mees, G. Gréhan, and K. F. Ren, “Description of arbitrary shaped beams in elliptical cylinder coordinates, by using a plane wave spectrum approach,” Opt. Commun. 161, 63–78 (1999). [CrossRef]
  24. S. C. Mao and Z.-S. Wu, “Scattering by an infinite homogenous anisotropic elliptic cylinder in terms of Mathieu functions and fourier series,” J. Opt. Soc. Am. A 25, 2925–2931(2008). [CrossRef]
  25. S. C. Mao, Z. S. Wu, and H. Y. Li, “Three-dimensional scattering by an infinite homogeneous anisotropic elliptic cylinder in terms of Mathieu functions,” J. Opt. Soc. Am. A 26, 2282–2291 (2009). [CrossRef]
  26. S. Caorsi, M. Pastorino, and M. Raffetto, “Electromagnetic scattering by a multilayer elliptic cylinder under transverse-magnetic illumination: series solution in terms of Mathieu functions,” IEEE Trans. Antennas Propag. 45, 926–935(1997). [CrossRef]
  27. D. Marcuse, “Light scattering from elliptical fibers,” Appl. Opt. 13, 1903–1905 (1974). [CrossRef]
  28. A. R. Steinhardt and L. Fukshansky, “Geometrical optics approach to the intensity distribution in finite cylindrical media,” Appl. Opt. 26, 3778–3789 (1987). [CrossRef]
  29. C. L. Adler, J. A. Lock, and B. R. Stone, “Rainbow scattering by a cylinder with a nearly elliptical cross section,” Appl. Opt. 37, 1540–1550 (1998). [CrossRef]
  30. P. Yang and K. N. Liou, “Geometrics-optics-integral-equation method for light scattering by non-spherical ice crystals,” Appl. Opt. 35, 6568–6584 (1996). [CrossRef]
  31. P. Yang and K. N. Liou, “An exact geometric-optics approach for computing the optical properties of large absorbing particles,” J. Quant. Spectrosc. Radiat. Transfer 110, 1162–1177 (2009). [CrossRef]
  32. P. Yang, H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, M. I. Mishchenko, G. W. Kattawar, and Q. Fu, “Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region,” Appl. Opt. 44, 5512–5523 (2005). [CrossRef]
  33. Z. Zhang, P. Yang, G. W. Kattawar, and W. J. Wiscombe, “Single scattering properties of platonic solids in geometric-optics regime,” J. Quant. Spectrosc. Radiat. Transfer 106, 595–603 (2007). [CrossRef]
  34. L. Bi, P. Yang, G. W. Kattawar, Y. Hu, and B. A. Baum, “Scattering and absorption of light by ice particles: solution by a new physical-geometric optics hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 112, 1492–1508(2011). [CrossRef]
  35. E. A. Hovenac, “Calculation of far-field scattering from nonspherical particles using a geometrical optics approach,” Appl. Opt. 30, 4739–4746 (1991). [CrossRef]
  36. F. Xu, K. F. Ren, and X. Cai, “Extension of geometrical-optics approximation to on-axis Gaussian beam scattering. I. By a spherical particle,” Appl. Opt. 45, 4990–4999 (2006). [CrossRef]
  37. F. Xu, K. F. Ren, X. Cai, and J. Shen, “Extension of geometrical-optics approximation to on-axis Gaussian beam scattering. II. By a spheroidal particle with end-on incidence,” Appl. Opt. 45, 5000–5009 (2006). [CrossRef]
  38. J. A. Lock, C. L. Adler, and E. A. Hovenac, “Exterior caustics produced in scattering of a diagonally incident plane wave by a circular cylinder: semiclassical scattering theory analysis,” J. Opt. Soc. Am. A 17, 1846–1856 (2000). [CrossRef]
  39. C. L. Adler, J. A. Lock, B. R. Stone, and C. J. Garcia, “High-order interior caustics produced in scattering of a diagonally incident plane wave by a circular cylinder,” J. Opt. Soc. Am. A 14, 1305–1315 (1997). [CrossRef]
  40. K. F. Ren, F. Onofri, C. Rozé, and T. Girasole, “Vectorial complex ray model and application to two-dimensional scattering of plane wave by a spheroidal particle,” Opt. Lett. 36, 370–372 (2011). [CrossRef]
  41. K. F. Ren, C. Rozé, and T. Girasole, “Scattering and transversal divergence of anellipsoidal particle by using vectorial complex ray model,” J. Quant. Spectrosc. Radiat. Transfer, (to be published). [CrossRef]
  42. F. Onofri, A. Lenoble, H. Bultynck, and P.-H. Guéring, “High-resolution laser diffractometry for the on-line sizing of small transparent fibres,” Opt. Commun. 234, 183–191 (2004). [CrossRef]
  43. G. Gouesbet and L. Mees, “Validity of the elliptical cylinder localized approximation for arbitrary shaped beams in generalized Lorenz–Mie theory for elliptical cylinders,” J. Opt. Soc. Am. A 16, 2946–2958 (1999). [CrossRef]
  44. M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited