OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 34 — Dec. 1, 2012
  • pp: 8236–8245

Orbital angular momentum generation and mode transformation with high efficiency using forked polarization gratings

Yanming Li, Jihwan Kim, and Michael J. Escuti  »View Author Affiliations


Applied Optics, Vol. 51, Issue 34, pp. 8236-8245 (2012)
http://dx.doi.org/10.1364/AO.51.008236


View Full Text Article

Enhanced HTML    Acrobat PDF (1960 KB) | SpotlightSpotlight on Optics Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a novel optical element that efficiently generates orbital angular momentum (OAM) of light and transforms light between OAM modes based on a polarization grating with a fork-shaped singularity. This forked polarization grating (FPG) is composed of liquid crystalline materials, and can be made either static or switchable with high diffraction efficiency (i.e., 100% theoretically) into a single order. By spatially varying the Pancharatnam–Berry phase, FPGs shape the wavefront and thus control the OAM mode. We demonstrate theoretically and empirically that a charge lg FPG creates helical modes with OAM charge ±lg when a Gaussian beam is input, and more generally, transforms the incident helical mode with OAM charge lin into output modes with OAM charge lin±lg. We also show for the first time that this conversion into a single mode can be very efficient (i.e., 95% experimentally) at visible wavelengths, and the relative power between the two possible output modes is polarization-controllable from 0% to 100%. We developed a fabrication method that substantially improves FPG quality and efficiency over prior work. We also successfully fabricated switchable FPGs, which can be electrically switched between an OAM generating/transforming state and a transmissive state. Our experimental results showed >92% conversion efficiency for both configurations at 633 nm. These holographically fabricated elements are compact (i.e., thin glass plates), lightweight, and easily optimized for nearly any wavelength from ultraviolet to infrared, for a wide range of OAM charge, and for large or small clear apertures. They are ideal elements for enhanced control of OAM, e.g., in optical trapping and high-capacity information.

© 2012 Optical Society of America

OCIS Codes
(140.3300) Lasers and laser optics : Laser beam shaping
(260.6042) Physical optics : Singular optics

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: September 21, 2012
Manuscript Accepted: October 10, 2012
Published: November 30, 2012

Virtual Issues
December 7, 2012 Spotlight on Optics

Citation
Yanming Li, Jihwan Kim, and Michael J. Escuti, "Orbital angular momentum generation and mode transformation with high efficiency using forked polarization gratings," Appl. Opt. 51, 8236-8245 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-34-8236


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Allen, M. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992). [CrossRef]
  2. V. Garcés-Chávez, D. McGloin, M. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91, 093602 (2003). [CrossRef]
  3. J. Hamazaki, R. Morita, K. Chujo, Y. Kobayashi, S. Tanda, and T. Omatsu, “Optical-vortex laser ablation,” Opt. Express 18, 2144–2151 (2010). [CrossRef]
  4. G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Lett. 12, 5448–5456 (2004). [CrossRef]
  5. J. García-Escartín and P. Chamorro-Posada, “Quantum multiplexing with the orbital angular momentum of light,” Phys. Rev. A 78, 1–10 (2008). [CrossRef]
  6. T. Todorov, L. Nikolova, and N. Tomova, “Polarization holography. 2. Polarization holographic gratings in photoanisotropic materials with and without intrinsic birefringence,” Appl. Opt. 23, 4588–4591 (1984). [CrossRef]
  7. C. Oh and M. J. Escuti, “Numerical analysis of polarization gratings using the finite-difference time-domain method,” Phys. Rev. A 76, 043815 (2007). [CrossRef]
  8. G. Crawford, J. Eakin, M. Radcliffe, A. Callan-Jones, and R. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005). [CrossRef]
  9. M. J. Escuti, C. Oh, S. Carlos, C. W. M. Bastiaansen, and D. J. Broer, “Simplified spectropolarimetry using reactive mesogen polarization gratings,” Proc. SPIE 6302, 630207 (2006). [CrossRef]
  10. C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89, 121105 (2006). [CrossRef]
  11. S. Nersisyan, N. Tabiryan, D. Steeves, and B. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. 18, 1–47 (2009). [CrossRef]
  12. J. Kim, C. Oh, S. Serati, and M. J. Escuti, “Wide-angle, nonmechanical beam steering with high throughput utilizing polarization gratings,” Appl. Opt. 50, 2636–2639 (2011). [CrossRef]
  13. E. Nicolescu and M. J. Escuti, “Polarization-independent tunable optical filters using bilayer polarization gratings,” Appl. Opt. 49, 3900–3904 (2010). [CrossRef]
  14. E. Nicolescu, C. Mao, and A. Fardad, “Polarization-insensitive variable optical attenuator and wavelength blocker using liquid crystal polarization gratings,” J. Lightwave Technol. 28, 3121–3127 (2009). [CrossRef]
  15. M. Kudenov, M. J. Escuti, E. Dereniak, and K. Oka, “White-light channeled imaging polarimeter using broadband polarization gratings,” Appl. Opt. 50, 2283–2293(2011). [CrossRef]
  16. R. Komanduri, W. Jones, C. Oh, and M. J. Escuti, “Polarization-independent modulation for projection displays using small-period LC polarization,” J. Soc. Inf. Disp. 15, 589–594 (2007). [CrossRef]
  17. J. Kim, R. K. Komanduri, K. F. Lawler, D. J. Kekas, and M. J. Escuti, “Efficient and monolithic polarization conversion system based on a polarization grating,” Appl. Opt. 51, 4852–4857 (2012). [CrossRef]
  18. H. Choi, J. H. Woo, J. W. Wu, D.-W. Kim, T.-K. Lim, and S. H. Song, “Holographic inscription of helical wavefronts in a liquid crystal polarization grating,” Appl. Phys. Lett. 91, 141112 (2007). [CrossRef]
  19. Y. Li, J. Kim, and M. J. Escuti, “Controlling orbital angular momentum using forked polarization gratings,” Proc. SPIE 7789, 77890F (2010). [CrossRef]
  20. Y. Li, J. Kim, and M. J. Escuti, “Experimental realization of high-efficiency switchable optical OAM state generator and transformer,” Proc. SPIE 8130, 81300F (2011). [CrossRef]
  21. L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam–Berry phase optical elements for wave front shaping in the visible domain: Switchable helical mode generation,” Appl. Phys. Lett. 88, 221102 (2006). [CrossRef]
  22. S. McEldowney, D. Shemo, R. Chipman, and P. Smith, “Creating vortex retarders using photoaligned liquid crystal polymers,” Opt. Lett. 33, 134–136 (2008). [CrossRef]
  23. M. Schadt, H. Seiberle, and A. Schuster, “Optical patterning of multi-domain liquid-crystal displays with wide viewing angles,” Nature 381, 212–215 (1996). [CrossRef]
  24. I. Freund, “Critical point explosions in two-dimensional wave fields,” Opt. Commun. 159, 99–117 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited