OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 34 — Dec. 1, 2012
  • pp: 8246–8256

Platform motion blur image restoration system

Stephen J. Olivas, Michal Šorel, and Joseph E. Ford  »View Author Affiliations

Applied Optics, Vol. 51, Issue 34, pp. 8246-8256 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1332 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Platform motion blur is a common problem for airborne and space-based imagers. Photographs taken by hand or from moving vehicles in low-light conditions are also typically blurred. Correcting image motion blur poses a formidable problem since it requires a description of the blur in the form of the point spread function (PSF), which in general is dependent on spatial location within the image. Here we introduce a computational imaging system that incorporates optical position sensing detectors (PSDs), a conventional camera, and a method to reconstruct images degraded by spatially variant platform motion blur. A PSD tracks the movement of light distributions on its surface. It leverages more energy collection than a single pixel since it has a larger area making it proportionally faster. This affords it high temporal resolution as it measures the PSF at a specific location in the image field. Using multiple PSDs, a spatially variant PSF is generated and used to reconstruct images.

© 2012 Optical Society of America

OCIS Codes
(100.0100) Image processing : Image processing
(110.0110) Imaging systems : Imaging systems
(110.1758) Imaging systems : Computational imaging

ToC Category:
Imaging Systems

Original Manuscript: July 11, 2012
Revised Manuscript: October 23, 2012
Manuscript Accepted: October 24, 2012
Published: November 30, 2012

Stephen J. Olivas, Michal Šorel, and Joseph E. Ford, "Platform motion blur image restoration system," Appl. Opt. 51, 8246-8256 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. F. Boden, D. C. Redding, R. J. Hanisch, and J. Mo, “Massively parallel spatially variant maximum likelihood restoration of Hubble space telescope imagery,” J. Opt. Soc. Am. A 13, 1537–1545 (1996). [CrossRef]
  2. D. E. Meisner, “Fundamentals of airborne video remote sensing,” Remote Sens. Environ. 19, 63–79 (1986). [CrossRef]
  3. B. Hulgren and D. Hertel, “Low light performance of digital cameras,” Proc. SPIE 7242, 724214 (2009). [CrossRef]
  4. P. Campisi and K. Egiazarian, Blind Image Deconvolution: Theory and Applications (CRC, 2007).
  5. R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman, “Removing camera shake from a single photograph,” ACM Trans. Graph. 25, 787–794 (2006). [CrossRef]
  6. Q. Shan, J. Jia, and A. Agarwala, “High-quality motion deblurring from a single image,” ACM Trans. Graph. 27, 73:1–73:10 (2008). [CrossRef]
  7. J.-F. Cai, H. Ji, C. Liu, and Z. Shen, “High-quality curvelet-based motion deblurring from an image pair,” in Proceedings of Conference on Computer Vision and Pattern Recognition (IEEE, 2009), pp. 1566–1573.
  8. F. Sroubek and J. Flusser, “Multichannel blind deconvolution of spatially misaligned images,” IEEE Trans. Image Process. 14, 874–883 (2005). [CrossRef]
  9. Q. Shan, W. Xiong, and J. Jia, “Rotational motion deblurring of a rigid object from a single image,” in Proceedings of 11th International Conference on Computer Vision (IEEE, 2007), pp. 1–8.
  10. S. Harmeling, M. Hirsch, and B. Schölkopf, “Space-variant single-image blind deconvolution for removing camera shake,” Adv. Neural Inf. Process. Syst. 23, 829–837 (2010).
  11. A. Gupta, N. Joshi, C. Lawrence Zitnick, M. Cohen, and B. Curless, “Single image deblurring using motion density functions,” in Proceedings of the 11th European Conference on Computer Vision: Part I (Springer-Verlag, 2010), pp. 171–184.
  12. O. Whyte, J. Sivic, A. Zisserman, and J. Ponce, “Non-uniform deblurring for shaken images,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2010), pp. 491–498.
  13. M. Tico, M. Trimeche, and M. Vehvilainen, “Motion blur identification based on differently exposed images,” in Proceedings of International Conference on Image Processing (IEEE, 2006), pp. 2021–2024.
  14. L. Yuan, J. Sun, L. Quan, and H.-Y. Shum, “Image deblurring with blurred/noisy image pairs,” in SIGGRAPH ’07: ACM SIGGRAPH 2007 (ACM, 2007), p. 1.
  15. M. Sorel and F. Sroubek, “Space-variant deblurring using one blurred and one underexposed image,” in Proceedings of 16th International Conference on Image Processing (ICIP) (IEEE, 2009), pp. 157–160.
  16. R. Raskar, A. Agrawal, and J. Tumblin, “Coded exposure photography: motion deblurring using fluttered shutter,” ACM Trans. Graph. 25, 795–804 (2006). [CrossRef]
  17. A. Agrawal and R. Raskar, “Resolving objects at higher resolution from a single motion-blurred image,” in Proceedings of IEEE Conference Computer Vision and Pattern Recognition (IEEE, 2007), pp. 1–8.
  18. E. R. Dowski and W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt. 34, 1859–1866 (1995). [CrossRef]
  19. A. Levin, P. Sand, T. Sang Cho, F. Durand, and W. T. Freeman, “Motion-invariant photography,” ACM Trans. Graph. 27, 71:1–71:9 (2008). [CrossRef]
  20. T. Sang Cho, A. Levin, F. Durand, and W. T. Freeman, “Motion blur removal with orthogonal parabolic exposures,” in Proceedings of International Conference on Computational Photography (ICCP) (IEEE, 2010), pp. 1–8.
  21. P. Christian Hansen, J. G. Nagy, and D. P. Leary, Deblurring Images: Matrices, Spectra and Filtering (SIAM, 2006).
  22. C. Zhou and S. Nayar, “Computational cameras: convergence of optics and processing,” IEEE Trans. Image Process. 20, 3322–3340 (2011). [CrossRef]
  23. G. Wetzstein, I. Ihrke, D. Lanman, and W. Heidrich, “Computational plenoptic imaging,” Computer Graphics Forum, 2397–2426 (2011).
  24. N. Joshi, S. B. Kang, C. L. Zitnick, and R. Szeliski, “Image deblurring using inertial measurement sensors,” ACM Trans. Graph. 29, 30:1–30:9 (2010). [CrossRef]
  25. S. K. Nayar and M. Ben-Ezra, “Motion-based motion deblurring,” IEEE Trans. Pattern Anal. Mach. Intell. 26, 689–698 (2004). [CrossRef]
  26. Y.-W. Tai, H. Du, M. S. Brown, and S. Lin, “Correction of spatially varying image and video motion blur using a hybrid camera,” IEEE Trans. Pattern Anal. Mach. Intell. 32, 1012–1028 (2010). [CrossRef]
  27. W. Schottky, “Ueber den entstehungsort der photoelektronen in kupfer-kupferoxydul photozellen,” Phys. Z. 31, 913–925 (1930).
  28. J. T. Wallmark, “A new semiconductor photocell using lateral photoeffect,” Proc. IRE 45, 474–483 (1957). [CrossRef]
  29. H. Niu, C. Aoki, T. Matsuda, M. Takai, and M. Maeda, “A position-sensitive MOS device using lateral photovoltaic effect,” Jpn. J. Appl. Phys. 26, L35–L37 (1987).
  30. W. Wang and I. J. Busch-Vishniac, “The linearity and sensitivity of lateral effect position sensitive devices—an improved geometry,” IEEE Trans. Electron Devices 36, 2475–2480 (1957). [CrossRef]
  31. M. de Bakker, P. W. Verbeek, G. K. Steenvoorden, and I. T. Young, “The PSD transfer function,” IEEE Trans. Electron Devices 49, 202–206 (2002). [CrossRef]
  32. H. Andersson, “Position sensitive detectors: device technology and applications in spectroscopy,” Ph.D. thesis (Mid Sweden University, Department of Information Technology and Media, 2008).
  33. A. Makynen, “Position-sensitive devices for optical tracking and displacement sensing applications,” Ph.D. thesis (University of Oulu, 2000).
  34. M. Ben-Ezra, and S. K. Nayar, “Motion deblurring using hybrid imaging,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2003), pp. I-657–I-664.
  35. R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd ed. (Cambridge University, 2003).
  36. B. K. P. Horn, H. M. Hilden, and S. Negahdaripour, “Closed-form solution of absolute orientation using orthonormal matrices,” J. Opt. Soc. Am. A 5, 1127–1135 (1988). [CrossRef]
  37. A. Chambolle, V. Caselles, D. Cremers, M. Novaga, and T. Pock, “An introduction to total variation for image analysis,” in Theoretical Foundations and Numerical Methods for Sparse Recovery (De Gruyter, 2010).
  38. A. Chambolle and P. Lions, “Image recovery via total variation minimization and related problems,” Numer. Math. 76, 167–188 (1997). [CrossRef]
  39. G. H. Golub and C. F. Van Loan, Matrix Computations (Johns Hopkins University, 1996).
  40. J. G. Nagy and D. P. O’Leary, “Restoring images degraded by spatially variant blur,” SIAM J. Sci. Comput. 19, 1063–1082 (1998). [CrossRef]
  41. M. Hirsch, C. J. Schuler, S. Harmeling, and B. Schölkopf, “Fast removal of non-uniform camera shake,” in Proceedings of International Conference on Computer Vision (ICCV) (IEEE, 2011), pp. 463–470.
  42. M. Sorel and F. Sroubek, Restoration in the Presence of Unknown Spatially Varying Blur in Image Restoration: Fundamentals and Advances (CRC, 2012).
  43. R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed. (Prentice-Hall, 2006).
  44. W. H. Richardson, “Bayesian-based iterative method of image restoration,” J. Opt. Soc. Am. 62, 55–59 (1972). [CrossRef]
  45. L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745–754 (1974). [CrossRef]
  46. A. Hore and D. Ziou, “Image quality metrics: PSNR vs. SSIM,” in Proceedings of 20th International Conference on Pattern Recognition (ICPR,2010), pp. 2366–2369. [CrossRef]
  47. N. Massari, L. Gonzo, M. Gottardi, and A. Simoni, “High speed digital CMOS 2D optical position sensitive detector,” in Proceedings of Solid-State Circuits Conference (ESSCIRC, 2002), pp. 723–726.
  48. M. A. Clapp and R. Etienne-Cummings, “A dual pixel-type array for imaging and motion centroid localization,” IEEE Sens. J. 2, 529–548 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited