OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 34 — Dec. 1, 2012
  • pp: 8271–8276

Refractive index profile changes caused by arc discharge in long-period fiber gratings fabricated by a point-by-point method

Fatemeh Abrishamian, Nicoleta Dragomir, and Katsumi Morishita  »View Author Affiliations

Applied Optics, Vol. 51, Issue 34, pp. 8271-8276 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (343 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Long-period fiber gratings were inscribed in a commercial silica fiber by a point-by-point arc discharge technique with different discharge conditions. The refractive index (RI) profile change induced by arc discharge was measured using the quantitative phase microscopy for the first time to our knowledge. The causes of the transmission variations induced by different arc discharges and the mechanisms of the RI profile change were investigated based on the measured phase profiles. The RI in the core and the cladding has clearly changed due to arc discharge. The central dip in the core profile diminished very much, and the index gradient became gradual. The resonance wavelengths have fluctuated by discharge current and time owing to variations of the reduction of the core–cladding RI difference and the extent of the RI change region.

© 2012 Optical Society of America

OCIS Codes
(060.2300) Fiber optics and optical communications : Fiber measurements
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2340) Fiber optics and optical communications : Fiber optics components

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: September 27, 2012
Revised Manuscript: October 29, 2012
Manuscript Accepted: November 2, 2012
Published: November 30, 2012

Fatemeh Abrishamian, Nicoleta Dragomir, and Katsumi Morishita, "Refractive index profile changes caused by arc discharge in long-period fiber gratings fabricated by a point-by-point method," Appl. Opt. 51, 8271-8276 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. Kaminow and T. Li, eds., Optical Fiber Telecommunications IV-A: Components (Academic, 2002), Chap. 10.
  2. J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2, 275–289 (2008). [CrossRef]
  3. A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).
  4. G. Humbert and A. Malki, “Electric-arc-induced gratings in non-hydrogenated fibres: fabrication and high-temperature characterizations,” J. Opt. A 4, 194–198 (2002). [CrossRef]
  5. K. Morishita, S. F. Yuan, Y. Miyake, and T. Fujihara, “Refractive index variations and long-period fiber gratings made by the glass structure change,” IEICE Trans. Electron. E86-C, 1749–1758 (2003).
  6. G. Humbert, A. Malki, S. Février, P. Roy, and D. Pagnoux, “Electric arc-induced long-period gratings in Ge-free air-silica microstructure fibres,” Electron. Lett. 39, 349–350 (2003). [CrossRef]
  7. K. Morishita and Y. Miyake, “Fabrication and resonance wavelengths of long-period gratings written in a pure-silica photonic crystal fiber by the glass structure change,” J. Lightwave Technol. 22, 625–630 (2004). [CrossRef]
  8. K. Morishita and A. Kaino, “Adjusting resonance wavelengths of long-period fiber gratings by the glass-structure change,” Appl. Opt. 44, 5018–5023 (2005). [CrossRef]
  9. F. Abrishamian and K. Morishita, “Broadening adjustable range on post-fabrication resonance wavelength trimming of long-period fiber gratings and the mechanisms of resonance wavelength shifts,” IEICE Trans. Electron. E94-C, 641–647 (2011). [CrossRef]
  10. D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302–303 (1998). [CrossRef]
  11. A. Malki, G. Humbert, Y. Ouerdane, A. Boukhenter, and A. Boudrioua, “Investigation of the writing mechanism of electric-arc-induced long-period fiber gratings,” Appl. Opt. 42, 3776–3779 (2003). [CrossRef]
  12. A. Roberts, E. Ampem-Lassen, A. Barty, K. A. Nugent, G. W. Baxter, N. M. Dragomir, and S. T. Huntington, “Refractive-index profiling of optical fibers with axial symmetry by use of quantitative phase microscopy,” Opt. Lett. 27, 2061–2063 (2002). [CrossRef]
  13. N. M. Dragomir, G. W. Baxter, and A. Roberts, “Phase-sensitive imaging techniques applied to optical fibre characterisation,” IEE Proc. Optoelectron. 153, 217–221 (2006). [CrossRef]
  14. N. M. Dragomir, E. Ampen-Lassen, G. W. Baxter, P. Pace, S. T. Huntington, P. M. Farrell, A. J. Stevenson, and A. Roberts, “Analysis of changes in optical fibers during arc-fusion splicing by use of quantitative phase imaging,” Microsc. Res. Tech. 69, 847–851 (2006). [CrossRef]
  15. I. Hatakeyama and H. Tsuchiya, “Fusion splices for single-mode optical fibers,” IEEE J. Quantum Electron. 14, 614–619 (1978). [CrossRef]
  16. G. Rego, L. M. N. B. F. Santos, B. Schröder, P. V. S. Marques, J. L. Santos, and H. M. Salgado, “In situ temperature measurement of an optical fiber submitted to electric arc discharges,” IEEE Photon. Technol. Lett. 16, 2111–2113 (2004). [CrossRef]
  17. F. Abrishamian and K. Morishita, “Transfer-matrix method based on a discrete coupling model for analyzing uniform and nonuniform codirectional fiber grating couplers,” Appl. Opt. 51, 2367–2372 (2012). [CrossRef]
  18. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997). [CrossRef]
  19. F. Dürr, G. Rego, P. V. S. Marques, S. L. Semjonov, E. M. Dianov, H. G. Limberger, and R. P. Salathé, “Tomographic stress profiling of arc-induced long-period fiber gratings,” J. Lightwave Technol. 23, 3947–3953 (2005). [CrossRef]
  20. G. Rego, O. Okhotnikov, E. Dianov, and V. Sulimov, “High-temperature stability of long-period fiber gratings produced using an electric arc,” J. Lightwave Technol. 19, 1574–1579 (2001). [CrossRef]
  21. Y. Liu, H. W. Lee, K. S. Chiang, T. Zhu, and Y. J. Rao, “Glass structure changes in CO2-laser writing of long-period fiber gratings in boron-doped single-mode fibers,” J. Lightwave Technol. 27, 857–863 (2009). [CrossRef]
  22. E. M. Dianov, V. I. Karpov, M. V. Grekov, K. M. Golant, S. A. Vasiliev, O. I. Medvedkov, and R. R. Khrapko, “Thermo-induced long-period fibre gratings,” in Proceedings of the International Conference on Integrated Optics and Optical Fibre Communications and European Conference on Optical Communications (IEEE, 1997), Vol. 2, pp. 53–56.
  23. H. G. Limberger and G. Violakis, “Formation of Bragg gratings in pristine SMF-28e fibre using CW 244 nm Ar+-laser,” Electron. Lett. 46, 363–365 (2010). [CrossRef]
  24. B. H. Kim, Y. Park, T.-J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W.-T. Han, “Residual stress relaxation in the core of optical fiber by CO2 laser irradiation,” Opt. Lett. 26, 1657–1659 (2001). [CrossRef]
  25. T. S. Izumitani, Optical Glass (American Institute of Physics, 1986), Chaps. 1 and 3.
  26. A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10, 300–311 (2004). [CrossRef]
  27. R. Brückner, “Properties and structure of vitreous silica. I,” J. Non-Cryst. Solids 5, 123–175 (1970). [CrossRef]
  28. S. Sakaguchi and S. Todoroki, “Rayleigh scattering of silica glass and silica fibers with heat treatment,” Jpn. J. Appl. Phys. 37, Suppl. 37-1, 56–58 (1998). [CrossRef]
  29. D.-L. Kim, M. Tomozawa, S. Dubois, and G. Orcel, “Fictive temperature measurement of single-mode optical-fiber core and cladding,” J. Lightwave Technol. 19, 1155–1158 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited