OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 34 — Dec. 1, 2012
  • pp: 8296–8305

Airborne measurements of atmospheric methane column abundance using a pulsed integrated-path differential absorption lidar

Haris Riris, Kenji Numata, Steve Li, Stewart Wu, Anand Ramanathan, Martha Dawsey, Jianping Mao, Randolph Kawa, and James B. Abshire  »View Author Affiliations

Applied Optics, Vol. 51, Issue 34, pp. 8296-8305 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1008 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report airborne measurements of the column abundance of atmospheric methane made over an altitude range of 3–11 km using a direct detection integrated-path differential-absorption lidar with a pulsed laser emitting at 1651 nm. The laser transmitter was a tunable, seeded optical parametric amplifier pumped by a Nd:YAG laser, and the receiver used a photomultiplier detector and photon-counting electronics. The results follow the expected changes with aircraft altitude, and the measured line shapes and optical depths show good agreement with theoretical calculations.

© 2012 Optical Society of America

OCIS Codes
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar
(280.3640) Remote sensing and sensors : Lidar
(300.1030) Spectroscopy : Absorption
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Remote Sensing and Sensors

Original Manuscript: August 24, 2012
Manuscript Accepted: October 11, 2012
Published: November 30, 2012

Haris Riris, Kenji Numata, Steve Li, Stewart Wu, Anand Ramanathan, Martha Dawsey, Jianping Mao, Randolph Kawa, and James B. Abshire, "Airborne measurements of atmospheric methane column abundance using a pulsed integrated-path differential absorption lidar," Appl. Opt. 51, 8296-8305 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Intergovernmental Panel on Climate Change (IPCC), http://www.ipcc.ch/index.htm .
  2. P. Bergamaschi, C. Frankenberg, J. F. Meirink, M. C. Krol, F. J. Dentener, T. Wagner, U. Platt, J. O. Kaplan, S. Körner, M. Heimann, E. J. Dlugokencky, and A. De Goede, “Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT2. Evaluation based on inverse model simulations,” J. Geophys. Res. Atmos. 112, D02304 (2007). [CrossRef]
  3. M. Buchwitz, R. De Beek, J. P. Burrows, H. Bovensmann, T. Warneke, J. Notholt, J. F. Meirink, A. P. H. Goede, P. Bergamaschi, S. Körner, M. Heimann, and A. Schulz, “Atmospheric methane and carbon dioxide from SCIAMACHY satellite data: initial comparison with chemistry and transport models,” Atmos. Chem. Phys. 5, 941–962 (2005). [CrossRef]
  4. C. Frankenberg, J. F. Meirink, P. Bergamaschi, A. P. H. Goede, M. Heimann, S. Körner, U. Platt, M. van Weele, and T. Wagner, “Satellite cartography of atmospheric methane from SCIAMACHY on board ENVISAT: analysis of the years 2003 and 2004,” J. Geophys. Res. 111, D07303 (2006). [CrossRef]
  5. A. Razavi, C. Clerbaux, C. Wespes, L. Clarisse, D. Hurtmans, S. Payan, C. Camy-Peyret, and P. Coheur, “Characterization of methane retrievals from the IASI space-borne sounder,” Atmos. Chem. Phys. 9, 7889–7899 (2009). [CrossRef]
  6. T. August, D. Klaes, P. Schlussel, T. Hultberg, M. Crapeau, A. Arriaga, A. O’Carroll, D. Coppens, R. Munro, and X. Calbet, “IASI on Metop-A: operational level 2 retrievals after five years in orbit,” J. Quant. Spectrosc. Radiat. Transfer 113, 1340–1371 (2012). [CrossRef]
  7. P. F. Coheur, X. Xiong, C. D. Barnet, Q. Zhuang, T. Machida, C. Sweeney, and P. K. Patra, “Mid-upper tropospheric methane in the high Northern Hemisphere: spaceborne observations by AIRS, aircraft measurements, and model simulations,” J. Geophys. Res. 115, D19309 (2010). [CrossRef]
  8. X. Xiong, C. Barnet, E. Maddy, J. Wei, X. Liu, and T. S. Pagano, “Seven years’ observation of mid-upper tropospheric methane from atmospheric infrared sounder,” Remote Sens 2, 2509–2530 (2010). [CrossRef]
  9. T. Yokota, H. Oguma, I. Morino, A. Higurashi, T. Aoki, and G. Inoue, “Test measurements by a BBM of the nadir-looking SWIR FTS aboard GOSAT to monitor CO2 column density from space,” Proc. SPIE 5652, 182 (2004).
  10. T. Yokota, Y. Yoshida, N. Eguchi, Y. Ota, T. Tanaka, H. Watanabe, and S. Maksyutov, “Global concentrations of CO2 and CH4 retrieved from GOSAT: first preliminary results,” Sci. Online Lett. Atmos. 5, 160–163 (2009).
  11. I. Morino, O. Uchino, M. Inoue, Y. Yoshida, T. Yokota, P. O. Wennberg, G. C. Toon, D. Wunch, C. M. Roehl, J. Notholt, T. Warneke, J. Messerschmidt, D. W. T. Griffith, N. M. Deutscher, V. Sherlock, B. Connor, J. Robinson, R. Sussmann, and M. Rettinger, “Preliminary validation of column-averaged volume mixing ratios of carbon dioxide and methane retrieved from GOSAT short-wavelength infrared spectra,” Atmos. Meas. Tech. 4, 1061–1076 (2011).
  12. Y. Yoshida, O. Yoshifumi, E. Nawo, K. Nobuhiro, N. Koji, T. Ha, M. Isamu, and Y. Tatsuya, “Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the Greenhouse Gases Observing Satellite,” Atmos. Meas. Tech. 4, 717–734 (2011).
  13. J. Mao and S. R. Kawa, “Sensitivity studies for space-based measurement of atmospheric total column carbon dioxide by reflected sunlight,” Appl. Opt. 43, 914–927 (2004). [CrossRef]
  14. I. Aben, O. Hasekamp, and W. Hartmann, “Uncertainties in the space-based measurements of CO2 columns due to scattering in the Earth’s atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 104, 450–459 (2007). [CrossRef]
  15. E. S. Maddy, C. D. Barnet, M. Goldberg, C. Sweeney, and X. Liu, “CO2 retrievals from the atmospheric infrared sounder: methodology and validation,” J. Geophys. Res. 113, D11301 (2008). [CrossRef]
  16. E. J. Dlugokencky, S. Houweling, L. Bruhwiler, K. A. Masarie, P. M. Lang, J. B. Miller, and P. P. Tans, “Atmospheric methane levels off: temporary pause or a new steady state,” Geophys. Res. Lett. 30, 1–4 (2003). [CrossRef]
  17. E. J. Dlugokencky, L. Bruhwiler, J. W. C. White, L. K. Emmons, P. C. Novelli, S. A. Montzka, K. A. Masarie, P. M. Lang, A. M. Crotwell, J. B. Miller, and L. V. Gatti, “Observational constraints on recent increases in the atmospheric CH4burden,” Geophys. Res. Lett. 36, L18803 (2009). [CrossRef]
  18. K. Kvenvolden, “Methanehydrate: a major reservoir of carbon in the shallow geosphere?,” Chem. Geol. 71, 41–51 (1988). [CrossRef]
  19. F. Keppler, J. T. G. Hamilton, M. Bra, and T. Roeckmann, “Methane emissions from terrestrial plants under aerobic conditions,” Nature 439, 187–191 (2006). [CrossRef]
  20. T. R. Christensen, T. Johansson, H. J. Akerman, M. Mastepanov, N. Malmer, T. Friborg, P. Crill, and B. H. Vensson, “Thawing sub-arctic permafrost: effects on vegetation and methane emissions,” Geophys. Res. Lett. 31, L04501 (2004). [CrossRef]
  21. K. M. W. Anthony, P. Anthony, G. Grosse, and J. Chanton, “Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers,” Nat. Geosci. 5, 419–426 (2012). [CrossRef]
  22. E. Kort, S. Wofsy, B. Daube, M. Diao, J. Elkins, R. Gao, E. Hintsa, D. Hurst, R. Jimenez, F. Moore, J. Spackman, and M. Zondio, “Atmospheric observations of Arctic Ocean methane emissions up to 82° north,” Nat. Geosci. 5, 318–321 (2012). [CrossRef]
  23. J. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson, eds., Climate Change 2001: The Scientific Basis (Cambridge University, 2001).
  24. National Research Council, Decadal Survey: Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond (National Academic, 2007).
  25. NASA, “NASA ASCENDS Workshop,” http://cce.nasa.gov/ascends_2012/index.html .
  26. G. Ehret, A. Fix, C. Kiemle, and A. Wirth, “Space-borne monitoring of methane by intergrated path differential absorption lidar: perspective of DLR’s CHARM-SSB mission,” Proceedings of the 24th International Laser Radar Conference (2008), pp. 1208–1211.
  27. C. Stephan, M. Alpers, B. Millet, G. Ehret, P. Flamant, and C. Deniel, “MERLIN: a space-based methane monitor,” Proc. SPIE 8159, 815908 (2011). [CrossRef]
  28. A. Fix, C. Büdenbender, M. Wirth, M. Quatrevalet, A. Amediek, C. Kiemle, and G. Ehret, “Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO2 and CH4,” [Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing VII, 818206], Proc. SPIE 8182, 818206 (2011). [CrossRef]
  29. M. D. Smith, “Spacecraft observations of the Martian atmosphere,” Annu. Rev. Earth Planet. Sci. 36, 191–219 (2008). [CrossRef]
  30. M. J. Mumma, R. E. Novak, M. A. DiSanti, and B. P. Bonev, “A sensitive search for methane on Mars,” Bull. Am. Astron. Soc. 35, 937–938 (2003).
  31. M. J. Mumma, R. E. Novak, M. A. DiSanti, B. P. Bonev, and N. Dello Russo, “Detection and mapping of methane and water on Mars,” Bull. Am. Astron. Soc. 36, 1127 (2004).
  32. M. J. Mumma, G. L. Villanueva, R. E. Novak, T. Hewagama, B. P. Bonev, M. A. DiSanti, A. M. Mandell, and M. D. Smith, “Strong release of methane on Mars in northern summer 2003,” Science 323, 1041–1045 (2009). [CrossRef]
  33. P. H. Smith, L. K. Tamppari, R. E. Arvidson, D. Bass, D. Blaney, W. V. Boynton, A. Carswell, D. C. Catling, B. C. Clark, T. Duck, E. DeJong, D. Fisher, W. Goetz, H. P. Gunnlaugsson, M. H. Hecht, V. Hipkin, J. Hoffman, S. F. Hviid, H. U. Keller, S. P. Kounaves, C. F. Lange, M. T. Lemmon, M. B. Madsen, W. J. Markiewicz, J. Marshall, C. P. McKay, M. T. Mellon, D. W. Ming, R. V. Morris, W. T. Pike, N. Renno, U. Staufer, C. Stoker, P. Taylor, J. A. Whiteway, and A. P. Zent, “H2O at the Phoenix Landing Site,” Science 325, 58 (2009).
  34. R. W. Zureka, A. Chicarrob, M. A. Allen, J.-L. Bertaux, R. T. Clancy, F. Daerden, V. Formisano, J. B. Garvin, G. Neukum, and M. D. Smith, “Assessment of a 2016 mission concept: the search for trace gases in the atmosphere of Mars,” Planet. Space Sci. 59, 284–291 (2011). [CrossRef]
  35. K. Numata, H. Riris, S. Li, S. Wu, S. R. Kawa, M. Krainak, and J. Abshire, “Ground demonstration of a trace gas lidar based on optical parametric amplifiers,” J. Appl. Remote Sens. 6, 063561 (2012).
  36. H. Riris, S. Li, K. Numata, S. Wu, J. Burris, A. W. Yu, M. Krainak, and J. B. Abshire, “Methane measurements using optical parametric technology,” American Geophysical Union, Fall Meeting 2009 (American Geophysical Union, 2009), abstract no. A41C-0106.
  37. D. G. Murdock, S. V. Stearns, R. T. Lines, D. Lenz, D. M. Brown, and C. R. Philbrick, “Applications of real-world gas detection: airborne natural gas emission lidar (ANGEL) system,” J. Appl. Remote Sens. 2, 023518 (2008). [CrossRef]
  38. A. Minato, M. A. Joarder, S. Ozawa, M. Kadoya, and N. Sugimoto, “Laser long-path absorption lidar technique for measuring methane using gas correlation method,” Jpn. J. Appl. Phys. 38, 6130–6132 (1999). [CrossRef]
  39. Y. Kamali, J. F. Daigle, F. Théberge, M. Châteauneuf, A. Azarm, Y. Chen, C. Marceau, Z.-D. Sun, J. Bernhardt, S. C. Lessard, F. Lessard, G. Roy, J. Dubois, and S. L. Chin, “Remote sensing of trace methane using mobile femtosecond laser system of T&T Lab,” Opt. Commun. 282, 2062–2065 (2009). [CrossRef]
  40. M. J. T. Milton, T. D. Gardiner, T. Molero, and J. Galech, “Injection-seeded optical parametric oscillator for range-resolved DIAL measurements of atmospheric methane,” Opt. Commun. 142, 153–160 (1997). [CrossRef]
  41. E. R. Crosson, “A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapour,” Appl. Phys. B 92, 403–408 (2008). [CrossRef]
  42. C. Webster, “Measuring methane and its isotopes CH412, CH413, and CH3D on the surface of Mars with in situ laser spectroscopy,” Appl. Opt. 44, 1226–1235 (2005). [CrossRef]
  43. S. Wright, G. Duxbury, and N. Langford, “A compact quantum-cascade laser based spectrometer for monitoring the concentrations of methane and nitrous oxide in the troposphere,” Appl. Phys. B 85, 243–249 (2006). [CrossRef]
  44. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009). [CrossRef]
  45. K. Numata, J. R. Chen, S. T. Wu, J. B. Abshire, and M. A. Krainak, “Frequency stabilization of distributed-feedback laser diodes at 1572 nm for lidar measurements of atmospheric carbon dioxide,” Appl. Opt. 50, 1047 (2011). [CrossRef]
  46. A. Amediek, A. Fix, M. Wirth, and G. Ehret, “Development of an OPO system at 1.57 μm for integrated path DIAL measurement of atmospheric carbon dioxide,” Appl. Phys. B 92, 295–302 (2008). [CrossRef]
  47. R. Measures, Laser Remote Sensing (John Wiley & Sons, 1984).
  48. J. B. Abshire, H. Riris, G. Allan, C. J. Weaver, J. Mao, X. Xiaoli Sun, W. E. Hasselbrack, R. S. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus 62, 770–783 (2010). [CrossRef]
  49. G. Ehret, C. Kiemle, W. Wirth, A. Amediek, A. Fix, and S. Houwling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008). [CrossRef]
  50. S. A. Clough and M. J. Iacono, “Line-by-line calculations of atmospheric fluxes and cooling rates. 2: applications to carbon dioxide, ozone, methane, nitrous oxide, and the halocarbons,” J. Geophys. Res. 100, 16519–16535 (1995). [CrossRef]
  51. A. Amediek, X. Sun, and J. B. Abshire, “Analysis of column height measurements from a pulsed airborne CO2 integrated path differential absorption lidar,” IEEE Trans. Geosci. Remote Sens. (to be published).
  52. Global Modeling and Assimilation Office, http://gmao.gsfc.nasa.gov/ .
  53. P. Werle, R. Mucke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993). [CrossRef]
  54. P. Werle, P. Mazzinghi, F. D’Amato, M. De Rosa, K. Maurer, and F. Slemr, “Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy,” Spectrochim. Acta A 60, 1685–1705 (2004). [CrossRef]
  55. H. Riris, C. B. Carlisle, R. E. Warren, and D. E. Cooper, “Signal to noise ratio enhancement in frequency modulation spectrometers using digital signal processing,” Opt. Lett. 19, 144 (1994). [CrossRef]
  56. D. S. Bomse and D. J. Kane, “An adaptive singular value decomposition (SVD) algorithm for analysis of wavelength modulation spectra,” Appl. Phys. B 85, 461–466 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited