OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 34 — Dec. 1, 2012
  • pp: 8306–8314

Normalization of laser-induced breakdown spectroscopy spectra using a plastic optical fiber light collector and acoustic sensor device

Francisco Anabitarte, Luis Rodríguez-Cobo, José-Miguel López-Higuera, and Adolfo Cobo  »View Author Affiliations

Applied Optics, Vol. 51, Issue 34, pp. 8306-8314 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1243 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



To estimate the acoustic plasma energy in laser-induced breakdown spectroscopy (LIBS) experiments, a light collecting and acoustic sensing device based on a coil of plastic optical fiber (POF) is proposed. The speckle perturbation induced by the plasma acoustic energy was monitored using a CCD camera placed at the end of a coil of multimode POF and processed with an intraimage contrast ratio method. The results were successfully verified with the acoustic energy measured by a reference microphone. The proposed device is useful for normalizing LIBS spectra, enabling a better estimation of the sample’s chemical composition.

© 2012 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(110.6150) Imaging systems : Speckle imaging
(300.6210) Spectroscopy : Spectroscopy, atomic

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: June 27, 2012
Revised Manuscript: October 25, 2012
Manuscript Accepted: November 8, 2012
Published: November 30, 2012

Francisco Anabitarte, Luis Rodríguez-Cobo, José-Miguel López-Higuera, and Adolfo Cobo, "Normalization of laser-induced breakdown spectroscopy spectra using a plastic optical fiber light collector and acoustic sensor device," Appl. Opt. 51, 8306-8314 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
  2. R. Gaudiuso, M. Dell’Aglio, O. de Pascale, G. S. Senesi, and A. de Giacomo, “Laser induced breakdown spectroscopy for elemental analysis in environmental, cultural heritage and space applications: a review of methods and results,” Sensors 10, 7434–7468 (2010). [CrossRef]
  3. D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields,” Appl. Spectrosc. 66, 347–419 (2012). [CrossRef]
  4. C. Chaleard, P. Mauchien, N. Andre, J. L. Uebbing, Lacour, and C. Geertsen, “Correction of matrix effects in quantitative elemental analysis with laser ablation optical emission spectrometry,” J. Anal. At. Spectrom. 12, 183–188 (1997). [CrossRef]
  5. F. R. Doucet, T. F. Belliveau, J. L. Fortier, and J. Hubert, “Use of chemometrics and laser-induced breakdown spectroscopy for quantitative analysis of major and minor elements in aluminum alloys,” Appl. Spectrosc. 61, 327–332 (2007). [CrossRef]
  6. B. C. Castle, K. Talabardon, B. W. Smith, and J. D. Winefordner, “Variables influencing the precision of laser-induced breakdown spectroscopy measurements,” Appl. Spectrosc. 52, 649–657 (1998). [CrossRef]
  7. H. Lindner, K. H. Loper, D. W. Hahn, and K. Niemax, “The influence of laser-particle interaction in laser induced breakdown spectroscopy and laser ablation inductively coupled plasma spectrometry,” Spectrochim. Acta B: At. Spectrosc. 66, 179–185 (2011). [CrossRef]
  8. E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, “A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma,” Spectrochim. Acta B: At. Spectrosc. 62, 1287–1302 (2007). [CrossRef]
  9. V. Lednev, S. M. Pershin, and A. F. Bunkin, “Laser beam profile influence on LIBS analytical capabilities: single vs. multimode beam,” J. Anal. At. Spectrom. 25, 1745–1757 (2010). [CrossRef]
  10. E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, “Calibration-free laser-induced breakdown spectroscopy: state of the art,” Spectrochim. Acta B: At. Spectrosc. 65, 1–14 (2010). [CrossRef]
  11. N. B. Zorov, A. A. Gorbatenko, T. A. Labutin, and A. M. Popov, “A review of normalization techniques in analytical atomic spectrometry with laser sampling: from single to multivariate correction,” Spectrochim. Acta B: At. Spectrosc. 65, 642–657 (2010). [CrossRef]
  12. E. F. Runge, R. W. Minck, and F. R. Bryan, “Spectrochemical analysis using a pulsed laser source,” Spectrochim. Acta 20, 733–736 (1964). [CrossRef]
  13. S. Palanco and J. Laserna, “Spectral analysis of the acoustic emission of laser-produced plasmas,” Appl. Opt. 42, 6078–6084 (2003). [CrossRef]
  14. A. Hrdlička, L. Zaorálková, M. Galiová, T. Čtvrtníčková, V. Kanický, V. Otruba, K. Novotný, P. Krásenský, J. Kaiser, R. Malina, and K. Páleníková, “Correlation of acoustic and optical emission signals produced at 1064 and 532 nm laser-induced breakdown spectroscopy (LIBS) of glazed wall tiles,” Spectrochim. Acta B: At. Spectrosc. 64, 74–78 (2009). [CrossRef]
  15. S. Conesa, S. Palanco, and J. J. Laserna, “Acoustic and optical emission during laser-induced plasma formation,” Spectrochim. Acta B: At. Spectrosc. 59, 1395–1401 (2004). [CrossRef]
  16. W. B. Spillman, B. R. Kline, L. B. Maurice, and P. L. Fuhr, “Statistical-mode sensor for fiber optic vibration sensing uses,” Appl. Opt. 28, 3166–3176 (1989). [CrossRef]
  17. A. Hrdlicka, L. Prokes, A. Stanková, K. Novotný, A. Vitesníková, V. Kanický, V. Otruba, J. Kaiser, J. Novotný, R. Malina, and K. Páleníková, “Development of a remote laser-induced breakdown spectroscopy system for investigation of calcified tissue samples,” Appl. Opt. 49, C16–C20 (2010). [CrossRef]
  18. C. Bohling, D. Scheel, K. Hohmann, W. Schade, M. Reuter, and G. Holl, “Fiber-optic laser sensor for mine detection and verification,” Appl. Opt. 45, 3817–3825 (2006). [CrossRef]
  19. M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochimic Acta B: At. Spectrosc. 59, 723–735 (2004). [CrossRef]
  20. P. B. Dixon and D. W. Hahn, “Feasibility of detection and identification of individual bioaerosols using laser-induced breakdown spectroscopy,” Anal. Chem. 77, 631–638 (2005). [CrossRef]
  21. F. Anabitarte, L. Rodriguez-Cobo, M. Lomer, J. Mirapeix, J. M. Lopez-Higuera, and A. Cobo, “Laser induced breakdown spectroscopy light collector based on coiled plastic optical fiber,” in Proceedings of the 20th International Conference on Plastic Optical Fibers, Bilbao, Spain, 14 September 2011 (International Cooperative of Plastic Optical Fiber, 2011), pp. 315–319.
  22. G. Aldabaldetreku, I. Bikandi, M. A. Illarramendi, G. Durana, and J. Zubia, “A comprehensive analysis of scattering in polymer optical fibers,” Opt. Express 18, 24536–24555 (2010). [CrossRef]
  23. G. Hernán Sendra, “Activity analysis on dynamic speckle patterns (Análisis de actividad en patrones de speckle dinámico),” Ph.D. thesis (Universidad Nacional de Mar de Plata, 2009).
  24. R. Arizaga, M. Trivi, and H. Rabal, “Speckle time evolution characterization by the cooccurrence matrix analysis,” Opt. Laser Technol. 31, 163–169 (1999). [CrossRef]
  25. J. A. Aguilera, J. Bengoechea, and C. Aragón, “Spatial characterization of laser induced plasmas obtained in air and argon with different laser focusing distances,” Spectrochim. Acta B: At. Spectrosc. 59, 461–469 (2004). [CrossRef]
  26. C. Koeppen, R. F. Shi, W. D. Chen, and A. F. Garito, “Properties of plastic optical fibers,” J. Opt. Soc. Am. B 15, 727–739 (1998). [CrossRef]
  27. C. Stauter, P. Gerard, J. Fontaine, and T. Engel, “Laser ablation acoustical monitoring,” in Symposium H on Laser Processing of Surfaces and Thin Films of the 1996 E-MRS Spring Conference, Amsterdam (Elsevier, 1997), pp. 174–178.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited