OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 35 — Dec. 10, 2012
  • pp: 8360–8365

Fabrication of terahertz wire-grid polarizers

Anni Partanen, Juha Väyrynen, Sami Hassinen, Hemmo Tuovinen, Jarkko Mutanen, Tommi Itkonen, Pertti Silfsten, Pertti Pääkkönen, Markku Kuittinen, Kari Mönkkönen, and Tapani Venäläinen  »View Author Affiliations

Applied Optics, Vol. 51, Issue 35, pp. 8360-8365 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (751 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Wire-grid polarizers for terahertz region were fabricated by manufacturing triangular grating using a ruling-based, ultraprecision diamond machining process and replicating the pattern into polymethylpentene (TPX) and cyklo-olefin copolymer (COC) sheets using hot embossing. On top of the imprinted structures, aluminum was evaporated in an oblique angle, forming an aluminum wire grid. The achieved extinction rate was over 150 for TPX polarizers and near 1000 for COC polarizers.

© 2012 Optical Society of America

OCIS Codes
(220.1920) Optical design and fabrication : Diamond machining
(220.4000) Optical design and fabrication : Microstructure fabrication
(260.5430) Physical optics : Polarization
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optical Design and Fabrication

Original Manuscript: September 11, 2012
Revised Manuscript: November 6, 2012
Manuscript Accepted: November 8, 2012
Published: December 5, 2012

Anni Partanen, Juha Väyrynen, Sami Hassinen, Hemmo Tuovinen, Jarkko Mutanen, Tommi Itkonen, Pertti Silfsten, Pertti Pääkkönen, Markku Kuittinen, Kari Mönkkönen, and Tapani Venäläinen, "Fabrication of terahertz wire-grid polarizers," Appl. Opt. 51, 8360-8365 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, R3052–R3054 (1996). [CrossRef]
  2. L. L. Zhang, H. Zhong, C. Deng, C. L. Zhang, and Y. J. Zhao, “Terahertz polarization imaging with birefringent materials,” Opt. Commun. 283, 4993–4995 (2010). [CrossRef]
  3. M. Reid and R. Fedosejevs, “Terahertz birefringence and attenuation properties of wood and paper,” Appl. Opt. 45, 2766–2772 (2006). [CrossRef]
  4. J. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005). [CrossRef]
  5. I. Yamada, K. Takano, M. Hangyo, M. Saito, and W. Watanabe, “Terahertz wire-grid polarizers with micrometer-pitch Al gratings,” Opt. Lett. 34, 274–276 (2009). [CrossRef]
  6. Y. Ma, A. Khalid, T. D. Drysdale, and D. R. R. Cumming, “Direct fabrication of terhertz optical devices on low-absorption polymer substrates,” Opt. Lett. 34, 1555–1557 (2009). [CrossRef]
  7. D.-B. Tian, H.-W. Zhang, W.-E. Lai, Q.-Y. Wen, Y.-Q. Song, and Z.-G. Wang, “Double wire-grid terahertz polarizer on low-loss polymer substrates,” Chin. Phys. Lett. 27, 104210 (2010). [CrossRef]
  8. L. Zhang, J. H. Teng, H. Tanoto, S. Y. Yew, L. Y. Deng, and S. J. Chua, “Terahertz wire-grid polarizer by nanoimprinting lithography on high resistivity silicon substrate,” in Proceedings of The 35th International Conference on Infrared Millimeter and Terahertz Waves, (IEEE, 2010), pp. 1–2.
  9. K. Takano, H. Yokoyama, A. Ichii, I. Morimoto, and M. Hangyo, “Wire-grid polarizer sheet in the terahertz region fabricated by nanoimprint technology,” Opt. Lett. 36, 2665–2667 (2011). [CrossRef]
  10. J. Väyrynen, T. Saastamoinen, J. Mutanen, P. Pääkkönen, K. Mönkkönen, and M. Kuittinen, “Manufacturing of cylindrical diffractive lens by ruling,” Proc. SPIE 7927, 79270M (2011). [CrossRef]
  11. T. Saastamoinen, J. Väyrynen, J. Mutanen, P. Pääkkönen, T. Itkonen, K. Mönkkönen, and M. Kuittinen, “Fabrication of hybrid optical structure by direct machining,” Proc. SPIE 7927, 792713 (2011). [CrossRef]
  12. L. John, J. Allsop, A. Mateboera, and P. Shore, “Optimising efficiency in diamond turned Fresnel mould masters,” Proc. SPIE 8065, 806509 (2011).
  13. E. Brinksmeier, O. Riemer, and A. Meier, “Submicron structuring by nano fast tool servo assisted diamond turning,” in EUSPEN Special Interest Group Meeting IPT Aachen(EUSPEN, 2010).
  14. Y. Takeuchi, S. Maeda, T. Kawai, and K. Sawada, “Manufacture of multiple-focus micro Fresnel lenses by means of nonrotational diamond grooving,” CIRP Ann. 51, 343–346 (2002). [CrossRef]
  15. A. Partanen, J. Väyrynen, S. Hassinen, H. Tuovinen, J. Mutanen, T. Itkonen, P. Silfsten, P. Pääkkönen, M. Kuittinen, and K. Mönkkönen, “Fabrication of terahertz wire-grid polarizer by direct machining,” in Proceedings of the 17th Micro-optics Conference (IEEE, 2011), pp. 1–2.
  16. J. Turunen, “Diffraction theory of micro relief gratings,” in Micro-optics: Elements, Systems and Applications, H. Herzig, ed. (Taylor & Francis, 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited