OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 35 — Dec. 10, 2012
  • pp: 8383–8389

Illumination correction of retinal images using Laplace interpolation

Conor Leahy, Andrew O’Brien, and Chris Dainty  »View Author Affiliations

Applied Optics, Vol. 51, Issue 35, pp. 8383-8389 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (581 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Retinal images are frequently corrupted by unwanted variations in intensity that occur due to general imperfections in the image acquisition process. This inhomogeneous illumination across the retina can limit the useful information accessible within the acquired image. Specifically, this can lead to serious difficulties when performing image processing tasks requiring quantitative analysis of features present on the retina. Given that the spatial frequency content of the shading profile often overlaps with that of retinal features, retrospectively correcting for inhomogeneous illumination while maintaining the radiometric fidelity of the real data can be challenging. This paper describes a simple method for obtaining an estimate of the illumination profile in retinal images, with the particular goal of minimizing its influence upon features of interest. This is achieved by making use of Laplace interpolation and a multiplicative image formation model.

© 2012 Optical Society of America

OCIS Codes
(100.0100) Image processing : Image processing
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: September 13, 2012
Revised Manuscript: November 4, 2012
Manuscript Accepted: November 6, 2012
Published: December 6, 2012

Virtual Issues
Vol. 8, Iss. 1 Virtual Journal for Biomedical Optics

Conor Leahy, Andrew O’Brien, and Chris Dainty, "Illumination correction of retinal images using Laplace interpolation," Appl. Opt. 51, 8383-8389 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Kubecka, R. Kolar, J. Jan, and R. Jirik, “Retrospective illumination correction of retinal images,” presented at Eurasip Biosignal, Brno, Czech Republic, 28–30 June 2006.
  2. B. Likar, J. B. A. Maintz, M. A. Viergever, and F. Pernuŝ, “Retrospective shading correction based on entropy minimization,” J. Microsc. 197, 285–295 (1999).
  3. M. Foracchia, E. Grisan, and A. Ruggeri, “Luminosity and contrast normalization in retinal images,” Med. Image Anal. 9, 179–190 (2005). [CrossRef]
  4. D. Tomazˆeviĉ, B. Likar, and F. Pernuŝ, “Comparative evaluation of retrospective shading correction methods,” J. Microsc. 208, 212–223 (2002). [CrossRef]
  5. L. Leistritz and D. Schweitzer, “Automated detection and quantification of exudates in retinal images,” Proc. SPIE 2298, 690 (1994). [CrossRef]
  6. D. Schweitzer, S. Jentsch, J. Dawczynski, M. Hammer, U. E. K. Wolf-Schnurrbusch, and S. Wolf, “Simple and objective method for routine detection of the macular pigment xanthophyll,” J. Biomed. Opt. 15, 061714 (2010). [CrossRef]
  7. L. Kubecka, J. Jan, and R. Kolar, “Retrospective illumination correction of retinal images,” Int. J. Biomed. Imaging 2010, 780262 (2010). [CrossRef]
  8. J. Verdera, V. Caselles, M. Bertalmio, and G. Sapiro, “Inpainting surface holes,” in Proceedings of International Conference on Image Processing (IEEE, 2003), pp. 903–906.
  9. M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, “Image inpainting,” in Proceedings of ACM Siggraph(Addison-Wesley, 2000), pp. 417–424.
  10. C. B. Schönlieb, “Applying modern PDE techniques to digital image restoration,” http://www.mathworks.com/tagteam/71412\_91992v00\_applying-modern-pde-techniques-to-digital-image-restoration.pdf .
  11. T. Chanwimaluang, G. Fan, and S. R. Fransen, “Hybrid retinal image registration,” IEEE Trans. Inf. Technol. Biomed. 10, 129–142 (2006). [CrossRef]
  12. S. Chaudhuri, S. Chatterjee, N. Katz, M. Nelson, and M. Goldbaum, “Detection of blood vessels in retinal images using two-dimensional matched filters,” IEEE Trans. Med. Imag. 8, 263–269 (1989). [CrossRef]
  13. A. Hoover, V. Kouznetsova, and M. Goldbaum, “Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response,” IEEE Trans. Med. Imag. 19, 203–210 (2000). [CrossRef]
  14. C. Sinthanayothin, J. F. Boyce, H. L. Cook, and T. H. Williamson, “Automated localization of the optic disc, fovea, and retinal blood vessels from digital color fundus images,” Br. J. Ophthalmol. 83, 902–910 (1999). [CrossRef]
  15. A. D. Fleming, K. A. Goatman, S. Philip, J. A. Olson, and P. F. Sharp, “Automatic detection of retinal anatomy to assist diabetic retinopathy screening,” Phys. Med. Biol. 52, 331–345 (2007). [CrossRef]
  16. W. R. Tobler and S. Kennedy, “Smooth multidimensional interpolation,” Geogr. Anal. 17, 251–257 (1985). [CrossRef]
  17. W. Press, B. Flannery, S. Teukolsky, and W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Press Syndicate, University Cambridge, 2007).
  18. M. N. O. Sadiku, Elements of Electromagnetics (Sounders College, 2000).
  19. E. Kreyszig, Advanced Engineering Mathematics (Wiley, 1993).
  20. F. C. Delori, D. G. Goger, B. R. Hammond, D. M. Snodderly, and S. A. Burns, “Macular pigment density measured by autofluorescence spectrometry: comparison with reflectometry and heterochromatic flicker photometry,” J. Opt. Soc. Am. A 18, 1212–1230 (2001). [CrossRef]
  21. P. L. Kaufman and A. Alm, Adler’s Physiology of the Eye: Clinical Application (Mosby, 2003).
  22. J. d’Errico, “Inpaint nans,” http://www.mathworks.com/matlabcentral/fileexchange/4551 .
  23. B. R. Hammond, B. R. Wooten, and D. M. Snodderly, “Individual variations in the spatial profile of human macular pigment,” J. Opt. Soc. Am. A 14, 1187–1196 (1997). [CrossRef]
  24. B. Dawant, A. Zijdenbos, and R. Margolin, “Correction of intensity variations in MR images for computer-aided tissue classification,” IEEE Trans. Med. Imag. 12, 770–781 (1993). [CrossRef]
  25. B. Likar, M. A. Viergever, and F. Pernuŝ, “Retrospective correction of MR intensity inhomogeneity by information minimization,” IEEE Trans. Med. Imag. 20, 1398–1410(2001). [CrossRef]
  26. B. Nill and B. H. Bouzas, “Objective image quality measure derived from digital image power spectra,” Opt. Eng. 31, 813–825 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited