OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 35 — Dec. 10, 2012
  • pp: 8423–8432

Optimization of solid-state lamps for photobiologically friendly mesopic lighting

Artūras Žukauskas, Rimantas Vaicekauskas, and Pranciškus Vitta  »View Author Affiliations

Applied Optics, Vol. 51, Issue 35, pp. 8423-8432 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (408 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The circadian and visual-performance-based mesopic systems of photometry were applied for the optimization of the spectral power distributions (SPDs) of the solid-state sources of light for low-illuminance lighting applications. At mesopic adaptation luminances typical of outdoor lighting (0.12cd/m2), the optimal SPDs were obtained through the minimization of the mesopic circadian action factor, which is the ratio of the circadian efficacy of radiation to mesopic luminous efficacy of radiation. For correlated color temperatures below 3000K, the optimized dichromatic light-emitting diodes (LEDs) are shown to pose a lower circadian hazard than high-pressure sodium lamps and common warm white LEDs; also they are potentially more efficacious and have acceptable color rendition properties under mesopic conditions.

© 2012 Optical Society of America

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(330.5380) Vision, color, and visual optics : Physiology
(350.4600) Other areas of optics : Optical engineering
(220.2945) Optical design and fabrication : Illumination design

ToC Category:
Optical Devices

Original Manuscript: September 14, 2012
Revised Manuscript: November 4, 2012
Manuscript Accepted: November 5, 2012
Published: December 7, 2012

Virtual Issues
Vol. 8, Iss. 1 Virtual Journal for Biomedical Optics

Artūras Žukauskas, Rimantas Vaicekauskas, and Pranciškus Vitta, "Optimization of solid-state lamps for photobiologically friendly mesopic lighting," Appl. Opt. 51, 8423-8432 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Holonyak, “Is the light emitting diode (LED) an ultimate lamp?” Am. J. Phys. 68, 864–866 (2000). [CrossRef]
  2. T. Taguchi, Y. Uchida, T. Setomoto, and K. Kobashi, “Application of white LED lighting to energy-saving type street lamps,” Proc. SPIE 4278, 7–12 (2001). [CrossRef]
  3. F. Li, D. Chen, X. Song, and Y. Chen, “LEDs: a promising energy-saving light source for road lighting,” in Proceedings of the Asia-Pacific Power and Energy Engineering Conference (APPEEC) (IEEE, 2009), pp. 2798–2800.
  4. P. Vitta, R. Stanikūnas, A. Tuzikas, I. Reklaitis, A. Stonkus, A. Petrulis, H. Vaitkevičius, and A. Žukauskas, “Energy-saving approaches to solid-state street lighting,” Proc. SPIE 8123, 81231H (2011). [CrossRef]
  5. Ç. Atici, T. Özçelebi, and J. J. Lukkien, “Exploring user-centered intelligent road lighting design: a road map and future research directions,” IEEE Trans. Consum. Electron. 57, 788–793 (2011). [CrossRef]
  6. D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310–320 (2002). [CrossRef]
  7. A. Žukauskas, M. S. Shur, and R. Gaska, Introduction to Solid-State Lighting (Wiley, 2002).
  8. E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308, 1274–1278 (2005). [CrossRef]
  9. G. C. Brainard, J. P. Hanifin, J. M. Greeson, B. Byrne, G. Glickman, E. Gerner, and M. D. Rollag, “Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor,” J. Neurosci. 21, 6405–6412 (2001).
  10. K. Thapan, J. Arendt, and D. J. Skene, “An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans,” J. Physiol. 535, 261–267 (2001). [CrossRef]
  11. D. M. Berson, F. A. Dunn, and M. Takao, “Phototransduction by retinal ganglion cells that set the circadian clock,” Science 295, 1070–1073 (2002). [CrossRef]
  12. S. M. Pauley, “Lighting for human circadian clock: recent research indicates that lighting has became a public health issue,” Med. Hypotheses 63, 588–596 (2004). [CrossRef]
  13. W. J. M. van Bommel, “Non-visual biological effect of lighting and the practical meaning for lighting for work,” Appl. Ergon. 37, 461–466 (2006). [CrossRef]
  14. A. R. Webb, “Considerations for lighting in the built environment: non-visual effects of light,” Energy Build. 38, 721–727 (2006). [CrossRef]
  15. L. Bellia, F. Bisegna, and G. Spada, “Lighting in indoor environments: visual and non-visual effects of light sources with different spectral power distributions,” Build. Environ. 46, 1984–1992 (2011). [CrossRef]
  16. K. P. Wright, R. J. Hughes, R. E. Kronauer, D.-J. Dijk, and C. A. Czeisler, “Intrinsic near-24-h pacemaker period determines limits of circadian entrainment to a weak synchronizer in humans,” Proc. Natl. Acad. Sci. USA 98, 14027–14032 (2001). [CrossRef]
  17. K. E. West, M. R. Jablonski, B. Warfield, K. S. Cecil, M. James, M. A. Ayers, J. Maida, C. Bowen, D. H. Sliney, M. D. Rollag, J. P. Hanifin, and G. C. Brainard, “Blue light from light-emitting diodes elicits a dose-dependent suppression of melatonin in humans,” J. Appl. Physiol. 110, 619–626(2011). [CrossRef]
  18. G. Glickman, R. Levin, and G. C. Brainard, “Ocular input for human melatonin regulation: relevance to breast cancer,” Neuroendocrinol. Lett. 23, 17–22 (2008).
  19. D. E. Blask, S. M. Hill, R. T. Dauchy, S. Xiang, L. Yuan, T. Duplessis, L. Mao, E. Dauchy, and L. A. Sauer, “Circadian regulation of molecular, dietary, and metabolic signaling mechanisms of human breast cancer growth by the nocturnal melatonin signal and the consequences of its disruption by light at night,” J. Pineal Res. 51, 259–269 (2011). [CrossRef]
  20. F. Falchi, P. Cinzano, C. D. Elvidge, D. M. Keith, and A. Haim, “Limiting the impact of light pollution on human health, environment and stellar visibility,” J. Environ. Manage. 92, 2714–2722 (2011). [CrossRef]
  21. D. Gall and V. Lapuente, “Beleuchtungsrelevante Aspekte bei der Auswahl eines förderlichen Lampenspektrums,” Licht 54, 860–871 (2002).
  22. D. Gall and K. Bieske, “Definition and measurement of circadian radiometric quantities,” in Proceedings of the CIE Symposium ’04 on Light and Health: Non-Visual Effects (CIE, 2004), pp. 129–132.
  23. M. S. Rea, M. G. Figueiro, and J. D. Bullough, “Circadian photobiology: an emerging framework for lighting practice and research,” Lighting Res. Technol. 34, 177–190 (2002). [CrossRef]
  24. R. Kozakov, H. Schöpp, St. Franke, C. Stoll, and D. Kunz, “Modification of light sources for appropriate biological action,” J. Phys. D 43, 234007 (2010). [CrossRef]
  25. D. Lang, “Energy efficient illumination for the biological clock,” Proc. SPIE 7954, 795402 (2011). [CrossRef]
  26. D. Lang, “Blue enhanced light sources opportunities and risks,” Proc. SPIE 8278, 827803 (2012). [CrossRef]
  27. X. Li, S. Jin, Y. Wang, S. Cen, P. Liang, L. Wang, and X. Li, “The mesopic effect of different correlated color temperature LED light sources on road lighting,” Proc. SPIE 7991, 799106 (2011). [CrossRef]
  28. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3, 160–175 (2007). [CrossRef]
  29. A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatic semiconductor lamps,” Appl. Phys. Lett. 80, 234–236 (2002). [CrossRef]
  30. Commission Internationale de l’Éclairage, “Recommended system for mesopic photometry based on visual performance,” Pub. CIE 191:2010.
  31. M. S. Rea, J. D. Bullough, J. P. Freyssinier-Nova, and A. Bierman, “A proposed unified system of photometry,” Lighting Res. Technol. 36, 85–111 (2004). [CrossRef]
  32. T. Goodman, A. Forbes, H. Walkey, M. Eloholma, L. Halonen, J. Alferdinck, A. Freiding, P. Bodrogi, G. Varady, and A. Szamas, “Mesopic visual efficiency IV: a model with relevance to nighttime driving and other applications,” Lighting Res. Technol. 39, 365–392 (2007). [CrossRef]
  33. D. Gall, “Circadiane Lichtgrößen und deren messtechnische Ermittlung,” Licht 54, 1292–1297 (2002).
  34. G. Wyszecki and W. S. Stiles, Color Science. Concepts and Methods, Quantitative Data and Formulae (Wiley, 2000).
  35. H. W. Leverenz, “Optimum efficiency conditions for white luminescent screens in kinescopes,” J. Opt. Soc. Am. 30, 309–315 (1940). [CrossRef]
  36. B. K. Ridley, Quantum Processes in Semiconductors (Oxford University, 2006).
  37. M. S. Shur and A. Žukauskas, “Solid-state lighting: toward superior illumination,” Proc. IEEE 93, 1691–1703 (2005). [CrossRef]
  38. G. Blasse and A. Brill, “Investigation of some Ce3+-astivated phosphors,” J. Chem. Phys. 47, 5139–5145 (1967). [CrossRef]
  39. J. K. Park, K. J. Choi, K. N. Kim, and C. H. Kim, “Investigation of strontium silicate yellow phosphors for white light emitting diodes from a combinatorial chemistry,” Appl. Phys. Lett. 87, 031108 (2005). [CrossRef]
  40. R. Kozakov, S. Franke, and H. Schöpp, “Approach to an effective biological spectrum of a light source,” Leukos 4, 255–263 (2008).
  41. W. R. J. Brown, “The influence of luminance level on visual sensitivity to color differences,” J. Opt. Soc. Am. 41, 684–688 (1951). [CrossRef]
  42. Commission Internationale de l’Éclairage, “Method of measuring and specifying colour rendering properties of light sources,” Pub. CIE 13.3:1995.
  43. D. L. MacAdam, “Visual sensitivities to color differences in daylight,” J. Opt. Soc. Am. 32, 247–274 (1942). [CrossRef]
  44. R. W. Pridmore and M. Melgosa, “Effect of luminance of samples on color discrimination ellipses: analysis and prediction of data,” Color Res. Appl. 30, 186–197 (2005). [CrossRef]
  45. H. Ou, D. Corell, Y. Ou, P. B. Poulsen, C. Dam-Hansen, and P.-M. Petersen, “Spectral design flexibility of LED brings better life,” Proc. SPIE 8278, 827802 (2012). [CrossRef]
  46. A. A. Kruithof, “Tabular luminescence lamps for general illumination,” Philips Tech. Rev. 6, 65–73 (1941).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited