OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 35 — Dec. 10, 2012
  • pp: 8460–8469

Preferential input-waveguide grating couplers: rigorous analysis using the pseudospectral time-domain method

Aristeides D. Papadopoulos and Elias N. Glytsis  »View Author Affiliations


Applied Optics, Vol. 51, Issue 35, pp. 8460-8469 (2012)
http://dx.doi.org/10.1364/AO.51.008460


View Full Text Article

Enhanced HTML    Acrobat PDF (467 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Preferential input-waveguide grating couplers are rigorously analyzed using the pseudospectral time-domain method in the total field/scattered field formulation for TE and TM polarizations in conjunction with the convolutional perfect matching layer approach. Four kinds of preferential input-waveguide grating couplers are studied: the volume holographic grating coupler, the slanted parallelogrammic surface-relief grating coupler, the double-corrugated surface-relief grating coupler, and the reflecting-stack surface-relief grating coupler. Coupler’s input coupling efficiencies to various waveguide modes are calculated. In addition, a comparative study of performance is presented in terms of the main design parameters and the operational free-space wavelength.

© 2012 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(050.1950) Diffraction and gratings : Diffraction gratings
(050.1960) Diffraction and gratings : Diffraction theory
(050.7330) Diffraction and gratings : Volume gratings
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Optical Devices

History
Original Manuscript: August 28, 2012
Revised Manuscript: November 9, 2012
Manuscript Accepted: November 11, 2012
Published: December 10, 2012

Citation
Aristeides D. Papadopoulos and Elias N. Glytsis, "Preferential input-waveguide grating couplers: rigorous analysis using the pseudospectral time-domain method," Appl. Opt. 51, 8460-8469 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-35-8460


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. H. Song and E. H. Lee, “Focusing-grating-coupler arrays for uniform and efficient signal distribution in a backboard optical interconnect,” Appl. Opt. 34, 5913–5919 (1995). [CrossRef]
  2. Q. Xing, S. Ura, T. Suhara, and H. Nishihara, “Contra-directional coupling between stacked waveguides using grating couplers,” Opt. Commun. 144, 180–182 (1997). [CrossRef]
  3. Q. Huang and P. R. Ashley, “Holographic Bragg grating input-output couplers for polymer waveguides at an 850 nm wavelength,” Appl. Opt. 36, 1198–1203 (1997). [CrossRef]
  4. S. M. Schultz, E. N. Glytsis, and T. K. Gaylord, “Design, fabrication, and performance of preferential-order volume grating waveguide couplers,” Appl. Opt. 39, 1223–1232 (2000). [CrossRef]
  5. R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88, 780–793 (2000). [CrossRef]
  6. K. Buse, F. Havermeyer, W. Liu, C. Moser, and D. Psaltis, “Holographic filters,” in Photorefractive Materials and Their Applications 3, P. Gunter and J. P. Huignard, eds. (Springer-Verlag, 2007), pp. 295–317.
  7. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009). [CrossRef]
  8. H. Yamada, M. Nozawa, M. Kinoshita, and K. Ohashi, “Vertical-coupling optical interface for on-chip optical interconnection,” Opt. Express 19, 698–703 (2011). [CrossRef]
  9. S. Ura, K. Shimizu, Y. Kita, K. Kentaka, J. Inoue, and Y. Awatsuji, “Integrated-optic free-space-wave coupler for package-level on-board optical interconnects,” IEEE J. Sel. Topics Quantum Electron. 17, 590–596 (2011). [CrossRef]
  10. S. Bernabe, C. Kopp, M. Volpert, J. Harduin, J.-M. Fedeli, and H. Ribot, “Chip-to-chip optical interconnections between stacked self-aligned SOI photonic chips,” Opt. Express 20, 7886–7894 (2012). [CrossRef]
  11. A. D. Papadopoulos and E. N. Glytsis, “Preferential-order waveguide grating couplers: a comparative rigorous analysis using the finite-difference time-domain method,” Appl. Opt. 49, 5787–5798 (2010). [CrossRef]
  12. S.-D. Wu, E. N. Glytsis, and T. K. Gaylord, “Optimization of finite-length input volume holographic grating couplers illuminated by finite-size incident beams,” Appl. Opt. 44, 4435–4446 (2005). [CrossRef]
  13. H. Kogelnik and T. P. Sosnowski, “Holographic thin film couplers,” Bell Syst. Tech. J. 49, 1602–1608 (1970).
  14. S.-D. Wu and E. N. Glytsis, “Volume holographic grating couplers: rigorous analysis using the finite-difference frequency-domain method,” Appl. Opt. 43, 1009–1023 (2004). [CrossRef]
  15. M. Li and S. J. Sheard, “Waveguide couplers using parallelogramic-shaped blazed gratings,” Opt. Commun. 109, 239–245 (1994). [CrossRef]
  16. M. Li and S. J. Sheard, “Experimental study of waveguide grating couplers with parallelogramic tooth profile,” Opt. Eng. 35, 3101–3106 (1996). [CrossRef]
  17. I. A. Avrutsky, A. S. Svakhin, and V. A. Sychugov, “Interference phenomena in waveguide with two corrugated boundaries,” J. Mod. Opt. 36, 1303–1320 (1989). [CrossRef]
  18. I. A. Avrutsky, A. S. Svakhin, V. A. Sychugov, and O. Parriaux, “High-efficiency single-order waveguide grating coupler,” Opt. Lett. 15, 1446–1448 (1990). [CrossRef]
  19. R. L. Roncone, L. Li, K. A. Bates, J. J. Burke, L. Weisenbach, and B. J. J. Zelinski, “Design and fabrication of single-leakage-channel grating coupler,” Appl. Opt. 32, 4522–4528 (1993). [CrossRef]
  20. R. L. Roncone, L. Li, K. A. Bates, and J. C. Brazas, “Single-leakage-channel grating couplers: comparison of theoretical and experimental branching ratios,” Opt. Lett. 18, 1919–1921(1993). [CrossRef]
  21. K. Ogawa, W. S. C. Chang, B. L. Sopori, and F. J. Rosenbaum, “A theoretical analysis of etched grating couplers for integrated optics,” IEEE J. Quantum Electron. 9, 29–42(1973). [CrossRef]
  22. M. Neviere, R. Petit, and M. Cadilhac, “About the theory of optical grating coupler-waveguide system,” Opt. Commun. 8, 113–117 (1973). [CrossRef]
  23. M. Neviere, P. Vincent, R. Petit, and M. Cadilhac, “Systematic study of resonances of holographic thin film couplers,” Opt. Commun. 9, 48–53 (1973). [CrossRef]
  24. M. Neviere, P. Vincent, R. Petit, and M. Cadilhac, “Determination of the coupling coefficient of a holographic thin film coupler,” Opt. Commun. 9, 240–245 (1973). [CrossRef]
  25. D. G. Dalgoutte and C. D. W. Wilkinson, “Thin grating couplers for integrated optics: an experimental and theoretical study,” Appl. Opt. 14, 2983–2998 (1975). [CrossRef]
  26. M. T. Woldarczyk and S. R. Seshadri, “Analysis of grating couplers in planar waveguides for waves at oblique incidence,” J. Opt. Soc. Am. A 2, 171–185 (1985). [CrossRef]
  27. L. Li and M. C. Gupta, “Effects of beam focusing on the efficiency of planar waveguide grating couplers,” Appl. Opt. 29, 5320–5325 (1990). [CrossRef]
  28. M. C. Gupta and L. Li, “Effect of beam defocus on the efficiency of planar waveguide grating couplers,” Appl. Opt. 30, 4402–4405 (1991). [CrossRef]
  29. D. Pascal, R. Orobtchouk, A. Layadi, A. Koster, and S. Laval, “Optimized coupling of a Gaussian beam into an optical waveguide with a grating coupler: comparison of experimental and theoretical results,” Appl. Opt. 36, 2443–2447 (1997). [CrossRef]
  30. R. Orobtchouk, A. Layadi, H. Gualous, D. Pascal, A. Koster, and S. Laval, “High-efficiency light coupling in a submicrometric silicon-on-insulator waveguide,” Appl. Opt. 39, 5773–5777 (2000). [CrossRef]
  31. J. C. Brazas and L. Li, “Analysis of input-grating couplers having finite lengths,” Appl. Opt. 34, 3786–3792 (1995). [CrossRef]
  32. R. Waldhäusl, B. Schnabel, P. Dannberg, E.-B. Kley, A. Bräuer, and W. Karthe, “Efficient coupling into polymer waveguides by gratings,” Appl. Opt. 36, 9383–9390 (1997). [CrossRef]
  33. C.-K. Kwan and G. W. Taylor, “Optimization of the parallelogramic grating diffraction efficiency for normally incident wave,” Appl. Opt. 37, 7698–7707 (1998). [CrossRef]
  34. B. Wang, J. Jiang, and G. P. Nordin, “Compact slanted grating couplers,” Opt. Express 12, 3313–3326 (2004). [CrossRef]
  35. K. Ogawa and W. S. C. Chang, “Analysis of holographic thin film grating coupler,” Appl. Opt. 12, 2167–2171 (1973). [CrossRef]
  36. P. Laakkonen, N. Passilly, and J. Turunen, “Diffractive optics for mobile solutions: light incoupling and polarization control with light guides,” Jpn. J. Appl. Phys. 47, 6635–6641 (2008). [CrossRef]
  37. B. Bai, J. Laakkonen, M. Kuittinen, and S. Siitonen, “Optimization of nonbinary slanted surface-relief gratings as high-efficiency broadband couplers for light guides,” Appl. Opt. 49, 5454–5464 (2010). [CrossRef]
  38. Q. H. Liu, “The PSTD algorithm: a time-domain method requiring only two cells per wavelength,” Microw. Opt. Technol. Lett. 15, 158–165 (1997). [CrossRef]
  39. J. A. Roden and S. D. Gedney, “Convolutional PML (CPML): an efficient FDTD implementation of the CFS-PML for arbitrary media,” Microw. Opt. Technol. Lett. 27, 334–339 (2000). [CrossRef]
  40. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
  41. L. Gurel and U. Oguz, “Signal-processing techniques to reduce the sinusoidal steady-state error in the FDTD method,” IEEE Trans. Antennas Propag. 48, 585–593 (2000). [CrossRef]
  42. A. D. Papadopoulos and E. N. Glytsis, “Finite-difference-time-domain analysis of finite-number-of-periods holographic and surface-relief gratings,” Appl. Opt. 47, 1981–1994 (2008). [CrossRef]
  43. J. S. Hesthaven, P. G. Dinesen, and J. P. Lynovy, “Spectral collocation time-domain modeling of diffractive optical elements,” J. Comput. Phys. 155, 287–306 (1999). [CrossRef]
  44. Z. Lin, “An analytical derivation of the optimum source patterns for the pseudospectral time-domain method,” J. Comput. Phys. 228, 7375–7387 (2009). [CrossRef]
  45. Z. Lin, “The optimal spatially-smoother source patterns for the pseudospectral time-domain method,” IEEE Trans. Antennas Propag. 58, 227–229 (2010). [CrossRef]
  46. T.-W. Lee and S. C. Hagness, “A compact wave source condition for the pseudospectral time-domain method,” Microwave Opt. Technol. Lett. 15, 158–165 (1997). [CrossRef]
  47. G. Xiang, M. S. Mirotznik, and D. W. Prather, “A method for introducing soft sources in the PSTD algorithm,” IEEE Trans. Antennas Propag. 52, 1665–1671 (2004). [CrossRef]
  48. A. D. Papadopoulos and E. N. Glytsis, “Optical waveguide grating couplers: 2nd-order and 4th-order finite-difference time-domain analysis,” Appl. Opt. 48, 5164–5175 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited