OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 36 — Dec. 20, 2012
  • pp: 8505–8515

Method of estimation of turbulence characteristic scales

Victor Alexeevich Kulikov, Maria Sergeevna Andreeva, Alexander Vasil’evich Koryabin, and Victor Ivanovich Shmalhausen  »View Author Affiliations

Applied Optics, Vol. 51, Issue 36, pp. 8505-8515 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1113 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose an optical method that uses phase data of a laser beam obtained from a Shack–Hartmann sensor to estimate both the inner and outer scales of turbulence. The method is based on the sequential analysis of normalized correlation functions of Zernike coefficients. It allows the exclusion C n 2 from the analysis and reduces the solution of a two-parameter problem to a sequential solution of two single-parameter problems. The method has been applied to estimate the outer and inner scales of turbulence induced in the water cell.

© 2012 Optical Society of America

OCIS Codes
(010.7060) Atmospheric and oceanic optics : Turbulence
(010.7340) Atmospheric and oceanic optics : Water
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(350.5500) Other areas of optics : Propagation

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: June 25, 2012
Revised Manuscript: September 28, 2012
Manuscript Accepted: November 2, 2012
Published: December 12, 2012

Victor Alexeevich Kulikov, Maria Sergeevna Andreeva, Alexander Vasil’evich Koryabin, and Victor Ivanovich Shmalhausen, "Method of estimation of turbulence characteristic scales," Appl. Opt. 51, 8505-8515 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976). [CrossRef]
  2. G. C. Valley and S. M. Wandzura, “Spatial correlation of phase-expansion coefficients for propagation through atmospheric turbulence,” J. Opt. Soc. Am. 69, 712–717 (1979). [CrossRef]
  3. A. N. Kolmogorov, “Local structure of turbulence in an incompressible viscous fluid at very high Reynolds number,” Sov. Phys. Usp. 10, 734–738 (1968). [CrossRef]
  4. P. H. Hu, J. Stone, and T. J. Stanley, “Application of Zernike polynomials to atmospheric propagation problems,” J. Opt. Soc. Am. A 6, 1595–1608 (1989). [CrossRef]
  5. V. I. Tatarskii, Wave Propagation in a Turbulent Medium (McGraw-Hill, 1961).
  6. T. von Kármán, “Progress in the statistical theory of turbulence,” Proc. Natl. Acad. Sci. USA 34, 530–539 (1948). [CrossRef]
  7. N. Takato and I. Yamaguchi, “Spatial correlation of Zernike phase-expansion coefficients for atmospheric turbulence with finite outer scale,” J. Opt. Soc. Am. A 12, 958–963 (1995). [CrossRef]
  8. D. M. Winker, “Effect of a finite outer scale on the Zernike decomposition of atmospheric optical turbulence,” J. Opt. Soc. Am. A 8, 1568–1573 (1991). [CrossRef]
  9. A. Consortini, L. Ronchi, and E. Moroder, “Role of the outer scale of turbulence in atmospheric degradation of optical images,” J. Opt. Soc. Am. 63, 1246–1248 (1973). [CrossRef]
  10. G. C. Valley, “Long- and short-term Strehl ratios for turbulence with finite inner and outer scales,” Appl. Opt. 18, 984–987 (1979). [CrossRef]
  11. A. Maccioni and J. C. Dainty, “Measurement of thermally induced optical turbulence in a water cell,” J. Mod. Opt. 44, 1111–1126 (1997). [CrossRef]
  12. M. E. Gracheva and A. S. Gurvich, “Strong fluctuations in the intensity of light propagated through the atmosphere close to the earth,” Izvestiya VUZ. Radiofizika 8, 711–724 (1965). [CrossRef]
  13. M. E. Gracheva, “Investigation of the statistical properties of strong fluctuations in the intensity of light propagated through the atmosphere near the earth,” Radiophys. Quantum Electron. 10, 424–433 (1967). [CrossRef]
  14. R. H. Kleen and G. R. Ochs, “Measurements of the wavelength dependence of scintillation in strong turbulence,” J. Opt. Soc. Am. 60, 1695–1697 (1970). [CrossRef]
  15. G. W. Reinhardt and S. A. Collins, “Outer scale effects in turbulence-degraded light-beam spectra,” J. Opt. Soc. Am. 62, 1526–1528 (1972). [CrossRef]
  16. M. Bertolotti, M. Carnevale, L. Muzii, and D. Sette, “Atmospheric turbulence effects on the phase of laser beams,” Appl. Opt. 13, 1582–1585 (1974). [CrossRef]
  17. J. L. Bufton, “Comparison of vertical profile turbulence structure with stellar observations,” Appl. Opt. 12, 1785–1793 (1973). [CrossRef]
  18. C. E. Coulman, J. Vernin, Y. Coqueugniot, and J. L. Caccia, “Outer scale of turbulence appropriate to modeling refractive index structure profiles,” Appl. Opt. 27, 155–160 (1988). [CrossRef]
  19. A. Consortini and K. A. O’Donnell, “Measuring the inner scale of atmospheric turbulence by correlation of lateral displacements of thin parallel laser beams,” Waves Random Media 3, 85–92 (1993). [CrossRef]
  20. R. G. Frehlich, “Estimation of the parameters of the atmospheric turbulence spectrum using measurements of the spatial intensity covariance,” Appl. Opt. 27, 2194–2198 (1988). [CrossRef]
  21. G. R. Ochs and R. J. Hill, “Optical-scintillation method of measuring turbulence inner scale,” Appl. Opt. 24, 2430–2432 (1985). [CrossRef]
  22. A. Consortini and K. O’Donnell, “Beam wandering of thin parallel beams through atmospheric turbulence,” Waves Random Media 1, S11–S28 (1991). [CrossRef]
  23. V. V. Voitsekhovich, “Outer scale of turbulence: comparison of different model,” J. Opt. Soc. Am. A 12, 1346–1353 (1995). [CrossRef]
  24. V. V. Voitsekhovich and S. Cuevas, “Adaptive optics and the outer scale of turbulence,” J. Opt. Soc. Am. A 12, 2523–2531 (1995). [CrossRef]
  25. M. C. Roggemann, B. M. Welsh, D. Montera, and T. A. Rhoadarmer, “Method for simulating atmospheric turbulence phase effects for multiple time slices and anisoplanatic conditions,” Appl. Opt. 34, 4037–4051 (1995). [CrossRef]
  26. S. Hippler, F. Hormuth, D. J. Butler, W. Brandner, and T. Henning, “Atmosphere-like turbulence generation with surface-etched phase-screens,” Opt. Express 14, 10139–10148(2006). [CrossRef]
  27. M. J. Curley, B. H. Peterson, J. C. Wang, S. S. Sarkisov, S. S. Sarkisov, G. R. Edlin, R. A. Snow, and J. F. Rushing, “Statistical analysis of cloud-cover mitigation of optical turbulence in the boundary layer,” Opt. Express 14, 8929–8946 (2006). [CrossRef]
  28. A. S. Gurvich, M. A. Kallistratova, and F. E. Martvel, “An investigation of strong fluctuations of light intensity in a turbulent medium at a small wave parameter,” Radiophys. Quantum Electron. 20, 705–714 (1977). [CrossRef]
  29. L. R. Bissonnette, “Atmospheric scintillation of optical and infrared waves: a laboratory simulation,” Appl. Opt. 16, 2242–2251 (1977). [CrossRef]
  30. R. W. Wilson, “SLODAR: measuring optical turbulence altitude with a Shack–Hartmann wavefront sensor,” Mon. Not. R. Astron. Soc. 337, 103–108 (2002). [CrossRef]
  31. T. Butterley, R. W. Wilson, and M. Sarazin, “Determination of the profile of atmospheric optical turbulence strength from SLODAR data,” Mon. Not. R. Astron. Soc. 369, 835–845 (2006). [CrossRef]
  32. M. Goodwin, C. Jenkins, and A. Lambert, “Improved detection of atmospheric turbulence with SLODAR,” Opt. Express 15, 14844–14860 (2007). [CrossRef]
  33. J. W. Deardorff and G. E. Willis, “Investigation of turbulent thermal convection between horizontal plates,” J. Fluid Mech. 28, 675–704 (1967). [CrossRef]
  34. W. Hou, “A simple underwater imaging model,” Opt. Lett. 34, 2688–2690 (2009). [CrossRef]
  35. D. J. Bogucki, J. A. Domaradzki, C. Anderson, H. W. Wijesekera, J. R. V. Zaneveld, and C. Moore, “Optical measurement of rates of dissipation of temperature variance due to oceanic turbulence,” Opt. Express 15, 7224–7230 (2007). [CrossRef]
  36. G. W. Carhart and M. A. Vorontsov, “Synthetic imaging: nonadaptive anisoplanatic image correction in atmospheric turbulence,” Opt. Lett. 23, 745–747 (1998). [CrossRef]
  37. M. I. Charnotskii, “Anisoplanatic short-exposure imaging in turbulence,” J. Opt. Soc. Am. A 10, 492–501 (1993). [CrossRef]
  38. V. P. Lukin, “Influence of the source spectrum on the optical measurements of turbulence,” Appl. Opt. 48, A93–A97 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited