OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 36 — Dec. 20, 2012
  • pp: 8521–8525

Optical isolator based on the electro-optic effect in periodically poled lithium niobate with the addition of a half domain

Lei Shi, Linghao Tian, and Xianfeng Chen  »View Author Affiliations


Applied Optics, Vol. 51, Issue 36, pp. 8521-8525 (2012)
http://dx.doi.org/10.1364/AO.51.008521


View Full Text Article

Enhanced HTML    Acrobat PDF (366 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose an optical isolator based on the electro-optic (EO) effect of periodically poled lithium niobate (PPLN). When the EO effect occurs in PPLN under a TE field, each domain serves as a half-wave plate under the quasi-phase-matching condition, and PPLN shows optical activity similar to quartz. The introduction of an additional half-domain to the normal PPLN changes the incident azimuth angle of the reflected light. As a result, the reflected light does not return to the original polarization state. Thus, the optical rotation accumulates and optical isolation occurs. The isolator can be employed for all linearly polarized light and has the advantage of being used in a weak-light system with low driving voltage and high isolation contrast.

© 2012 Optical Society of America

OCIS Codes
(230.3240) Optical devices : Isolators
(260.5430) Physical optics : Polarization

ToC Category:
Optical Devices

History
Original Manuscript: October 15, 2012
Revised Manuscript: November 10, 2012
Manuscript Accepted: November 16, 2012
Published: December 13, 2012

Citation
Lei Shi, Linghao Tian, and Xianfeng Chen, "Optical isolator based on the electro-optic effect in periodically poled lithium niobate with the addition of a half domain," Appl. Opt. 51, 8521-8525 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-36-8521


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dotsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett. 76, 2158–2160 (2000). [CrossRef]
  2. N. Kono, K. Kakihara, K. Saitoh, and M. Koshiba, “Nonreciprocal microresonators for the miniaturization of optical waveguide isolators,” Opt. Express 15, 7737–7751 (2007). [CrossRef]
  3. Z. Yu, Z. Wang, and S. Fan, “One-way total reflection with one-dimensional magneto-optical photonic crystals,” Appl. Phys. Lett. 90, 121133 (2007). [CrossRef]
  4. T. Amemiya, H. Shimizu, M. Yokoyama, P. N. Hai, M. Tanaka, and Y. Nakano, “1.54 μm TM-mode waveguide optical isolator based on the nonreciprocal-loss phenomenon: device design to reduce insertion loss,” Appl. Opt. 46, 5784–5791 (2007). [CrossRef]
  5. C. G. Treviño-Palacios, G. I. Stegeman, and P. Baldi, “Spatial nonreciprocity in waveguide second-order processes,” Opt. Lett. 21, 1442–1444 (1996). [CrossRef]
  6. Y. Matsuhisa, Y. Huang, Y. Zhou, S.-T. Wu, Y. Takao, A. Fujii, and M. Ozaki, “Cholesteric liquid crystal laser in a dielectric mirror cavity upon band-edge excitation,” Opt. Express 15, 616–622 (2007). [CrossRef]
  7. G. Shvets, “Optical polarizer/isolator based on a rectangular waveguide with helical grooves,” Appl. Phys. Lett. 89, 141127 (2006). [CrossRef]
  8. A. H. Gevorgyan and M. Z. Harutyunyan, “Chiral photonic crystals with an anisotropic defect layer,” Phys. Rev. E 76, 031701 (2007). [CrossRef]
  9. S. Mujumdar and H. Ramachandran, “Use of a graded gain random amplifier as an optical diode,” Opt. Lett. 26, 929–931 (2001). [CrossRef]
  10. Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3, 91–94 (2009). [CrossRef]
  11. Z. Yu and S. Fan, “Optical isolation based on nonreciprocal phase shift induced by interband photonic transitions,” Appl. Phys. Lett. 94, 171116 (2009). [CrossRef]
  12. M. D. Tocci, M. J. Bloemer, M. Scalora, J. P. Dowling, and C. M. Bowden, “Thin-film nonlinear optical diode,” Appl. Phys. Lett. 66, 2324–2326 (1995). [CrossRef]
  13. D. Alexander, J. Bruce Iii, C. Zuhlke, B. Koch, R. Rudebusch, J. Deogun, and H. Hamza, “Demonstration of a nanoparticle-based optical diode,” Opt. Lett. 31, 1957–1959 (2006). [CrossRef]
  14. X.-S. Lin, W.-Q. Wu, H. Zhou, K.-F. Zhou, and S. Lan, “Enhancement of unidirectional transmission through the coupling of nonlinear photonic crystal defects,” Opt. Express 14, 2429–2439 (2006). [CrossRef]
  15. A. E. Miroshnichenko, I. Pinkevych, and Y. S. Kivshar, “Tunable all-optical switching in periodic structures with liquid-crystal defects,” Opt. Express 14, 2839–2844 (2006). [CrossRef]
  16. X.-S. Qian, H. Wu, Q. Wang, Z.-Y. Yu, F. Xu, Y.-Q. Lu, and Y.-F. Chen, “Electro-optic tunable optical isolator in periodically poled LiNbO3,” J. Appl. Phys. 109, 053111 (2011). [CrossRef]
  17. X. Hu, Z. Li, J. Zhang, H. Yang, Q. Gong, and X. Zhang, “Low-Power and high-contrast nanoscale all-optical diodes via nanocomposite photonic crystal microcavities,” Adv. Funct. Mater. 21, 1803–1809 (2011). [CrossRef]
  18. Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009). [CrossRef]
  19. Y. Poo, R.-x. Wu, Z. Lin, Y. Yang, and C. T. Chan, “Experimental realization of self-guiding unidirectional electromagnetic edge states,” Phys. Rev. Lett. 106, 093903 (2011). [CrossRef]
  20. M. Soljacic, C. Luo, J. D. Joannopoulos, and S. Fan, “Nonlinear photonic crystal microdevices for optical integration,” Opt. Lett. 28, 637–639 (2003). [CrossRef]
  21. K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 79, 314–316 (2001). [CrossRef]
  22. L. Shi, L. Tian, and X. Chen, “Electro-optic chirality control in MgO:PPLN,” arXiv:1204.1174 (2012).
  23. Y. Lu, Z. Wan, Q. Wang, Y. Xi, and N. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77, 3719–3721 (2000). [CrossRef]
  24. P. Yeh, “Electromagnetic propagation in birefringent layered media,” J. Opt. Soc. Am. 69, 742–756 (1979). [CrossRef]
  25. K. Liu, J. Shi, and L. Chen, “Linear polarization-state generator with high precision in periodically poled lithium niobate,” Appl. Phys. Lett. 94, 101106 (2009). [CrossRef]
  26. Y. Zhang, Y. Chen, and X. Chen, “Polarization-based all-optical logic controlled-NOT, XOR, and XNOR gates employing electro-optic effect in periodically poled lithium niobate,” Appl. Phys. Lett. 99, 161117 (2011). [CrossRef]
  27. T. J. Wang and J. S. Chung, “Wavelength-tunable polarization converter utilizing the strain induced by proton exchange in lithium niobate,” Appl. Phys. B: Lasers Opt. 80, 193–198 (2005). [CrossRef]
  28. Y. H. Chen and Y. C. Huang, “Actively Q-switched Nd:YVO4 laser using an electro-optic periodically poled lithium niobate crystal as a laser Q-switch,” Opt. Lett. 28, 1460–1462(2003). [CrossRef]
  29. X. Chen, J. Shi, Y. Chen, Y. Zhu, Y. Xia, and Y. Chen, “Electro-optic Solc-type wavelength filter in periodically poled lithium niobate,” Opt. Lett. 28, 2115–2117(2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited