OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 36 — Dec. 20, 2012
  • pp: 8549–8556

Polarimetric characterization of bismuth thin films deposited by laser ablation

Rafael Espinosa-Luna, Enrique Camps, Dagoberto Cardona, and Elder De la Rosa  »View Author Affiliations

Applied Optics, Vol. 51, Issue 36, pp. 8549-8556 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (474 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A Mueller–Stokes analysis is applied to pure bismuth thin film samples prepared by the laser ablation technique by using a polarimeter with a 632.8 nm continuum wavelength laser. The complex refractive index is determined in the range of 250–1100 nm. Results from the Mueller matrix show the high sensitivity of diattenuation and polarizance parameters as a function of the sample thickness and the incidence angle, except at the pseudo-Brewster angle, where they exhibit the same value. Results show that the knowledge of the polarimetric response, with appropriate incident polarization states, could be used to design photonic Bi-based devices for several applications. Polarization dependence is the result of changes on the surface morphology as a result of the small value of the skin depth.

© 2012 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(310.6860) Thin films : Thin films, optical properties
(310.5448) Thin films : Polarization, other optical properties

ToC Category:
Thin Films

Original Manuscript: August 23, 2012
Revised Manuscript: November 12, 2012
Manuscript Accepted: November 16, 2012
Published: December 13, 2012

Rafael Espinosa-Luna, Enrique Camps, Dagoberto Cardona, and Elder De la Rosa, "Polarimetric characterization of bismuth thin films deposited by laser ablation," Appl. Opt. 51, 8549-8556 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. Hunderi, “Optical properties of crystalline and amorphous bismuth films,” J. Phys. F 5, 2214–2225 (1975). [CrossRef]
  2. S. Golin, “Band structure of bismuth: pseudopotential approach,” Phys. Rev. 166, 643–651 (1968). [CrossRef]
  3. M. Cardona and D. L. Greenaway, “Optical properties and band structure of group IV–VI and group V materials,” Phys. Rev. 133, A1685–A1697 (1964). [CrossRef]
  4. A. P. Lenham, D. M. Treherne, and R. J. Metcalfe, “Optical properties of antimony and bismuth crystals,” J. Opt. Soc. Am. 55, 1072–1074 (1965). [CrossRef]
  5. J. Toots and L. Marton, “Optical properties of antimony and bismuth in the far ultraviolet,” J. Opt. Soc. Am. 59, 1305–1308 (1969). [CrossRef]
  6. S. Dogel, D. Nattland, and W. Freyland, “Complete wetting transitions at the liquid-vapor interface of gallium-bismuth alloys: single wavelength and spectroscopic ellipsometry studies,” Phys. Rev. B 72, 085403 (2005). [CrossRef]
  7. O. Rabin, J. M. Perez, J. Grimm, G. Wojtkiewicz, and R. Weissleder, “An x-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles,” Nat. Mater. 5, 118–122 (2006). [CrossRef]
  8. M. V. Yezhelyev, X. Gao, Y. Xing, A. Al-Hajj, S. Nie, and R. M. O’Regan, “Emerging use of nanoparticles in diagnosis and treatment of breast cancer,” Lancet Oncol. 7, 657–667 (2006). [CrossRef]
  9. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413, 597–602 (2001). [CrossRef]
  10. A. Ghosh, “Memory switching in bismuth‐vanadate glasses,” J. Appl. Phys. 64, 2652–2655 (1988). [CrossRef]
  11. I. Svancara, C. Prior, S. B. Hocevar, and J. Wang, “A decade with bismuth-based electrodes in electroanalysis,” Electroanalysis 22, 1405–1420 (2010). [CrossRef]
  12. G. Fuchs, C. Montandon, M. Treilleux, J. Dumas, B. Cabaud, P. Mélinon, and A. Hoareau, “Low-energy Bi cluster beam deposition,” J. Phys. D 26, 1114–1119 (1993). [CrossRef]
  13. R. Atkinson and E. Curran, “Ellipsometric examination of the oxidation of vacuum-deposited bismuth films,” Thin Solid Film 128, 333–339 (1985). [CrossRef]
  14. J. C. G. de Sande, T. Missana, and C. N. Afonso, “Optical properties of pulsed laser deposited bismuth films,” J. Appl. Phys. 80, 7023–7027 (1996). [CrossRef]
  15. R. Serna, J. C. G. de Sande, J. M. Ballesteros, and C. N. Afonso, “Spectroscopic ellipsometry of composite thin films with embedded Bi nanocrystals,” J. Appl. Phys. 84, 4509–4516 (1998). [CrossRef]
  16. D. Liu, K. Wu, M. Shih, and M. Chern, “Giant nonlinear optical properties of bismuth thin films grown by pulsed laser deposition,” Opt. Lett. 27, 1549–1551 (2002). [CrossRef]
  17. D. Goldstein, Polarized Light, 3rd ed. (CRC, 2011).
  18. J. J. Gil and E. Bernabeu, “A depolarization criterion in Mueller matrices,” Opt. Acta 32, 259–261(1985). [CrossRef]
  19. J. J. Gil and E. Bernabeu, “Depolarization and polarization indexes of an optical system,” Opt. Acta 33, 185–189 (1986). [CrossRef]
  20. S. Y. Lu and R. A. Chipman, “Mueller matrices and the degree of polarization,” Opt. Commun. 146, 11–14 (1998). [CrossRef]
  21. R. Espinosa-Luna and E. Bernabeu, “On the Q(M) depolarization metric,” Opt. Commun. 277, 256–258 (2007). [CrossRef]
  22. S. Savenkov, A. Priezzhev, Ye. Oberemok, P. Silfsten, T. Ervasti, J. Ketolainen, and K. E. Peiponen, “Characterization of porous media by means of the depolarization metrics,” J. Quant. Spectrosc. Radiat. Transfer 113, 2503–2511 (2012). [CrossRef]
  23. R. Espinosa-Luna, G. Atondo-Rubio, and O. J. Velarde-Escobar, “Métrica de despolarización escalar Q(M) como criterio para identificar sistemas retardadores o desfasadores puros,” Rev. Mex. Fis. 56, 406–410 (2010).
  24. P. Eliés, B. Le Jeune, F. Le Roy-Brehonnet, J. Cariou, and J. Lotrian, “Optical media and target characterization by Mueller matrix decomposition,” J. Phys. D 29, 34–38(1996). [CrossRef]
  25. C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley, 1998).
  26. R. Espinosa-Luna, “Scattering by rough surfaces in a conical configuration: experimental Mueller matrix,” Opt. Lett. 27, 1510–1512 (2002). [CrossRef]
  27. K. M. Salas-Alcántara, R. Espinosa-Luna, and I. Torres-Gómez, “Polarimetric Mueller–Stokes analysis of photonic crystal fibers with mechanically-induced long-period gratings,” Opt. Eng. 51, 085005 (2012). [CrossRef]
  28. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, 2007).
  29. P. Y. Wang and A. L. Jain, “Modulated piezoreflectance in bismuth,” Phys. Rev. B 2, 2978–2983 (1970). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited