OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 36 — Dec. 20, 2012
  • pp: 8587–8593

Si3N4 waveguide-based parallel optical interconnect incorporating an interface comprising arrayed grating couplers combined with fiber arrays

Vivek Raj Shrestha, Hak-Soon Lee, and Sang-Shin Lee  »View Author Affiliations

Applied Optics, Vol. 51, Issue 36, pp. 8587-8593 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (998 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A high-speed parallel optical interconnect (POI) incorporating silicon nitride (Si3N4) waveguides was realized that takes advantage of an eight-channel input/output interface based on grating couplers (GCs) in alignment with fiber arrays. For each of the channels, a straight waveguide in the middle is linked to a GC via a taper, which is addressed by a single-mode fiber (SMF) at the input and a multimode fiber at the output. To verify the feasibility of the interconnect, the alignment tolerance has been explored in terms of the position and angle of incidence of the SMF with respect to the GC. This has been conducted by probing into the optical throughput of the proposed POI, which is determined by different sources of loss associated with the proposed Si3N4 waveguide device. For a typical GC, the measured coupling loss was 5.2 dB at the center wavelength of 1590 nm, when addressed by a SMF. For a 1 dB loss penalty, the positional tolerance of the fiber was discovered to about ±3μm and 45 μm along the lateral direction and the direction inclined at 16 deg normal to the device, respectively. The corresponding angular tolerance was ±1deg. We ultimately confirmed that 8×10Gbps high-speed digital signals were efficiently delivered through the proposed POI.

© 2012 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(130.0130) Integrated optics : Integrated optics
(200.4650) Optics in computing : Optical interconnects
(230.7380) Optical devices : Waveguides, channeled

ToC Category:
Optical Devices

Original Manuscript: August 22, 2012
Revised Manuscript: November 19, 2012
Manuscript Accepted: November 19, 2012
Published: December 14, 2012

Vivek Raj Shrestha, Hak-Soon Lee, and Sang-Shin Lee, "Si3N4 waveguide-based parallel optical interconnect incorporating an interface comprising arrayed grating couplers combined with fiber arrays," Appl. Opt. 51, 8587-8593 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160  Gb/s bidirectional polymer-waveguide board-level optical interconnects using CMOS-based transceivers,” IEEE Trans. Adv. Packaging 32, 345–359 (2009). [CrossRef]
  2. L. Schares, J. A. Kash, F. E. Doany, C. L. Schow, C. Schuste, D. M. Kuchta, P. K. Pepeljugoski, J. M. Trewhella, C. W. Baks, R. A. John, L. Shan, Y. H. Kwark, R. A. Budd, P. Chiniwalla, F. R. Libsch, J. Rosner, C. K. Tsang, C. S. Patel, J. D. Schaub, R. Dangel, F. Horst, B. J. Offrein, D. Kucharski, D. Guckenberger, S. Hegde, H. Nyikal, C. K. Lin, A. Tandon, G. R. Trott, M. Nystrom, D. P. Bour, M. R. T. Tan, and D. W. Dolfi, “Terabus: terabit/second-class card-level optical interconnect technologies,” IEEE J. Sel. Top. Quantum Electron. 12, 1032–1044 (2006). [CrossRef]
  3. Y. Yadin, and M. Orenstein, “Parallel optical interconnects over multimode waveguide,” J. Lightwave Technol. 24, 380–386 (2006). [CrossRef]
  4. L. B. Windover, J. N. Simon, S. A. Rosenau, K. S. Giboney, G. M. Flower, L. W. Mirkarimi, A. Grot, B. Law, C. K. Lin, A. Tandon, R. W. Gruhlke, H. Xia, G. Rankin, M. R. T. Tan, and D. W. Dolfi, “Parallel-optical interconnects >100  Gb/s,” J. Lightwave Technol. 22, 2055–2063 (2004). [CrossRef]
  5. L. Vivien, D. Pascal, S. Lardenois, D. Marris-Morini, E. Cassan, F. Grillot, S. Laval, J. M. Fédéli, and L. E. Melhaoui, “Light injection in SOI microwaveguides using high-efficiency grating couplers,” J. Lightwave Technol. 24, 3810–3815 (2006). [CrossRef]
  6. D. Taillaert, F. V. Laere, M. Ayre, W. Bogaerts, D. V. Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006). [CrossRef]
  7. L. Zimmermann, T. Tekin, H. Schroeder, P. Dumon, and W. Bogaerts, “How to bring nanophotonics to application—silicon photonics packaging,” IEEE LEOS Newsletters 22, 4–14 (2008).
  8. P. Cheben, S. Janz, B. Lamontagne, and D. X. Xu, “Optical off-chip interconnects in multichannel planar waveguide devices,” U.S. patent 7376308 B2 (20May2008).
  9. C. Kopp, S. Bernabe, B. B. Bakir, J.-M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, and T. Tekin, “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17, 498–509 (2011). [CrossRef]
  10. L. Zimmermann, T. Tekin, W. Bogaerts, and P. Dumon, “G-Pack—A generic testbed package for Silicon photonics devices,” in Proc. Group IV Photon (IEEE, 2008), pp. 371–373.
  11. T. Tekin, H. Schroder, L. Zimmermann, P. Dumon, and W. Bogaerts, “Fibre-array optical interconnection for silicon photonics,” Proc. 34th Eur. Conf. Opt. Commun. 5, 93–94 (2008). [CrossRef]
  12. L. Zimmermann, H. Schroder, P. Dumon, W. Bogaerts, and T. Tekin, “Epixpack-advanced smart packaging solutions for silicon photonics,” in Proceedings of the 14th European Conference on Integrated Optics (ECIO, 2008), pp. 33–36.
  13. P. Dumon, W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, “Compact wavelength router based on a silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array,” Opt. Express 14, 664–669 (2006). [CrossRef]
  14. A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011). [CrossRef]
  15. X. Zheng, F. Y. Liu, J. Lexau, D. Patil, G. Li, Y. Luo, H. D. Thacker, I. Shubin, J. Yao, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultralow power 80  Gb/s,” J. Lightwave Technol. 30, 641–650 (2012). [CrossRef]
  16. F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguide,” Opt. Quantum Electron. 26, 977–986 (1994). [CrossRef]
  17. K. K. Lee, D. R. Lim, H. C. Luan, A. Agrawal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000). [CrossRef]
  18. F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides,” IEEE Photonics Technol. Lett. 16, 1661–1663 (2004). [CrossRef]
  19. N. Daldosso, M. Melchiorri, F. Riboli, M. Girardini, G. Pucker, M. Crivellari, P. Bellutti, A. Lui, and L. Pavesi, “Comparison among various Si3N4 waveguide geometries grown within a CMOS fabrication pilot line,” J. Lightwave Technol. 22, 1734–1740 (2004). [CrossRef]
  20. “Refractive index database,” http://www.filmetrics.com/refractive-index-database .
  21. D. Taillaert, “Grating couplers as interface between optical fibers and nanophotonic waveguides,” Ph.D. dissertation (Ghent University, 2005).
  22. T. Montalbo, “Fiber to waveguide couplers for silicon photonics,” S.M. thesis (Massachusetts Institute of Technology, 2004).
  23. L. Wang, Y. Li, M. Porcel, D. Vermeulen, X. Han, J. Wang, X. Jian, R. Baets, M. Zhao, and G. Morthier, “A polymer-based surface grating coupler with an embedded Si3N4 layer,” J. Appl. Phys. 111, 114507 (2012). [CrossRef]
  24. “High-speed detectors,” http://www.lightwavestore.com/product_datasheet/OTI-Rx-015C_pdf1.pdf .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited