OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 36 — Dec. 20, 2012
  • pp: 8621–8624

Nanosecond soliton pulse generation by mode-locked erbium-doped fiber laser using single-walled carbon-nanotube-based saturable absorber

Mohd Afiq Ismail, Sulaiman Wadi Harun, Nurul Rozullyah Zulkepely, Roslan Md Nor, Fauzan Ahmad, and Harith Ahmad  »View Author Affiliations

Applied Optics, Vol. 51, Issue 36, pp. 8621-8624 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (447 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a simple and low cost mode-locked erbium-doped fiber laser (EDFL) operating in the nanosecond region using a single-walled carbon nanotube (SWCNT)-based saturable absorber (SA). A droplet of SWCNT solution is applied on the end of a fiber ferrule, which is then mated to another clean connector ferrule to construct an SA. Then the SA is integrated into a ring EDFL cavity for nanosecond pulse generation. The EDFL operates at around 1570.4 nm, with a soliton-like spectrum with small Kelly sidebands, which confirms the attainment of the anomalous dispersion. It produces a soliton pulse train with a 332 ns width, repetition rate of 909.1 kHz, an average output power of 0.31 mW, and energy of 0.34 nJ at the maximum pump power of 130.8 mW.

© 2012 Optical Society of America

OCIS Codes
(140.3500) Lasers and laser optics : Lasers, erbium
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Lasers and Laser Optics

Original Manuscript: October 23, 2012
Revised Manuscript: November 22, 2012
Manuscript Accepted: November 25, 2012
Published: December 14, 2012

Mohd Afiq Ismail, Sulaiman Wadi Harun, Nurul Rozullyah Zulkepely, Roslan Md Nor, Fauzan Ahmad, and Harith Ahmad, "Nanosecond soliton pulse generation by mode-locked erbium-doped fiber laser using single-walled carbon-nanotube-based saturable absorber," Appl. Opt. 51, 8621-8624 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008). [CrossRef]
  2. M. A. Ismail, S. J. Tan, N. S. Shahabuddin, S. W. Harun, H. Arof, and H. Ahmad, “Performance comparison of mode-locked erbium-doped fiber laser with nonlinear polarization rotation and saturable absorber approaches,” Chin. Phys. Lett. 29, 054216 (2012). [CrossRef]
  3. S. W. Harun, R. Akbari, H. Arof, and H. Ahmad, “Mode-locked bismuth-based erbium-doped fiber laser with stable and clean femtosecond pulses output,” Laser Phys. Lett. 8, 449–452 (2011). [CrossRef]
  4. F. Träger, Springer Handbook of Lasers and Optics (Springer Verlag, 2007).
  5. V. Philippov, J. Nilsson, W. A. Clarkson, A. Abdolvand, V. E. Kisel, V. G. Shcherbitsky, N. V. Kuleshov, V. I. Konstantinov, and V. I. Levchenko, “Passively Q-switched Er-Yb double clad fiber laser with Cr2+:ZnSe and Co2+:MgAl2O4 as a saturable absorber,” Proc. SPIE 5335, 8–15 (2004). [CrossRef]
  6. M. J. Lederer, V. Kolev, B. Luther-Davies, H. H. Tan, and C. Jagadish, “Ion-implanted InGaAs single quantum well semiconductor saturable absorber mirrors for passive mode-locking,” J. Phys. D 34, 2455–2464 (2001). [CrossRef]
  7. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol. 22, 51–56(2004). [CrossRef]
  8. S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, H. Yaguchi, M. Jablonski, and S. Y. Set, “Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers,” Opt. Lett. 29, 1581–1583 (2004). [CrossRef]
  9. Y. Sakakibara, A. G. Rozhin, H. Kataura, Y. Achiba, and M. Tokumoto, “Carbon nanotube-poly (vinylalcohol) nanocomposite film devices: applications for femtosecond fiber laser mode lockers and optical amplifier noise suppressors,” Jpn. J. Appl. Phys. 44, 1621–1625 (2005). [CrossRef]
  10. K. Kashiwagi, S. Yamashita, and S. Y. Set, “In-situ monitoring of optical deposition of carbon nanotubes onto fiber end,” Opt. Express 17, 5711–5715 (2009). [CrossRef]
  11. C. Xia, M. Kumar, M.-Y. Cheng, O. P. Kulkarni, M. N. Islam, and W. A. Wood, “Supercontinuum generation in silica fibers by amplified nanosecond laser diode pulses,” IEEE J. Sel. Top. Quantum Electron. 13, 789–797 (2007). [CrossRef]
  12. J. Xu, S. Wu, J. Liu, Q. Wang, Q.-H. Yang, and P. Wang, “Nanosecond-pulsed erbium-doped fiber lasers with graphene saturable absorber,” Opt. Commun. 285, 4466–4469(2012). [CrossRef]
  13. E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett. 95, 111108 (2009). [CrossRef]
  14. A. Jorio, M. A. Pimenta, A. G. Souza Filho, R. Saito, G. Dresselhaus, and M. S. Dresselhaus, “Characterizing carbon nanotube samples with resonance Raman scattering,” New J. Phys. 5, 139 (2003). [CrossRef]
  15. K. Kieu, and M. Mansuripur, “Femtosecond laser pulse generation with a fiber taper embedded in carbon nanotube/polymer composite,” Opt. Lett. 32, 2242–2244 (2007). [CrossRef]
  16. S. Y. Choi, D. K. Cho, Y. W. Song, K. Oh, K. Kim, F. Rotermund, and D. I. Yeom, “Graphene-filled hollow optical fiber saturable absorber for efficient soliton fiber laser mode-locking,” Opt. Express 20, 5652–5657 (2012). [CrossRef]
  17. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited