OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 36 — Dec. 20, 2012
  • pp: 8637–8640

Photonic nanojet focusing for hollow-core photonic crystal fiber probes

Petru Ghenuche, Hervé Rigneault, and Jérôme Wenger  »View Author Affiliations

Applied Optics, Vol. 51, Issue 36, pp. 8637-8640 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (337 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Large-pitch kagome-lattice hollow-core photonic crystal fibers (HC-PCFs) offer appealing optical properties for beam delivery and remote sensing. However, focusing their optical mode on a submicrometer spot can be challenging due to the large mode diameter and low numerical aperture of these fibers. Here, we demonstrate that a 30 μm latex microsphere directly set at the HC-PCF end-face provides an efficient means to focus the fiber mode down to a spot of 540 nm full width at half-maximum thanks to a photonic nanojet effect. The system is used for fluorescence imaging and direct laser writing on a thin absorbing layer. Potential applications include inspection of semiconductor wafers, photolithography, laser surgery, fluorescence sensing, or optical transfection.

© 2012 Optical Society of America

OCIS Codes
(120.4820) Instrumentation, measurement, and metrology : Optical systems
(170.2150) Medical optics and biotechnology : Endoscopic imaging
(180.2520) Microscopy : Fluorescence microscopy
(230.3990) Optical devices : Micro-optical devices
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: October 18, 2012
Revised Manuscript: November 15, 2012
Manuscript Accepted: November 17, 2012
Published: December 17, 2012

Virtual Issues
Vol. 8, Iss. 1 Virtual Journal for Biomedical Optics

Petru Ghenuche, Hervé Rigneault, and Jérôme Wenger, "Photonic nanojet focusing for hollow-core photonic crystal fiber probes," Appl. Opt. 51, 8637-8640 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. St. J. Russell, “Photonic crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006). [CrossRef]
  2. G. Humbert, J. Knight, G. Bouwmans, P. St. J. Russell, D. Williams, P. Roberts, and B. Mangan, “Hollow core photonic crystal fibers for beam delivery,” Opt. Express 12, 1477–1484(2004). [CrossRef]
  3. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002). [CrossRef]
  4. S. O. Konorov, A. B. Fedotov, and A. M. Zheltikov, “Enhanced four-wave mixing in a hollow-core photonic-crystal fiber,” Opt. Lett. 28, 1448–1450 (2003). [CrossRef]
  5. S. Brustlein, P. Berto, R. Hostein, P. Ferrand, C. Billaudeau, D. Marguet, A. Muir, J. Knight, and H. Rigneault, “Double-clad hollow core photonic crystal fiber for coherent Raman endoscope,” Opt. Express 19, 12562–12568 (2011). [CrossRef]
  6. S. O. Konorov, C. J. Addison, H. G. Schulze, R. F. B. Turner, and M. W. Blades, “Hollow-core photonic crystal fiber-optic probes for Raman spectroscopy,” Opt. Lett. 31, 1911–1913 (2006). [CrossRef]
  7. S. O. Konorov, A. Zheltikov, and M. Scalora, “Photonic-crystal fiber as a multifunctional optical sensor and sample collector,” Opt. Express 13, 3454–3459 (2005). [CrossRef]
  8. P. Ghenuche, S. Rammler, N. Y. Joly, M. Scharrer, M. Frosz, J. Wenger, P. St. J. Russell, and H. Rigneault, “Kagome hollow-core photonic crystal fiber probe for Raman spectroscopy,” Opt. Lett. 37, 4371–4373 (2012). [CrossRef]
  9. F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31, 3574–3576 (2006). [CrossRef]
  10. A. Nicia, “Lens coupling in fiber-optic devices: efficiency limits,” Appl. Opt. 20, 3136–3145 (1981). [CrossRef]
  11. A. Heifetz, S. C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J. Comput. Theor. Nanosci. 6, 1979–1992 (2009). [CrossRef]
  12. P. Ferrand, J. Wenger, M. Pianta, H. Rigneault, A. Devilez, B. Stout, N. Bonod, and E. Popov, “Direct imaging of photonic nanojets,” Opt. Express 16, 6930–6940 (2008). [CrossRef]
  13. M.-S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Engineering photonic nanojets,” Opt. Express 19, 10206–10220 (2011). [CrossRef]
  14. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12, 1214–1220 (2004). [CrossRef]
  15. X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13, 526–533(2005). [CrossRef]
  16. A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89, 221118 (2006). [CrossRef]
  17. K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, “Enhanced Raman scattering by self-assembled silica spherical microparticles,” J. Appl. Phys. 101, 063528 (2007). [CrossRef]
  18. D. Gérard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence,” Opt. Express 16, 15297–15303 (2008). [CrossRef]
  19. J. Wenger, D. Gérard, H. Aouani, and H. Rigneault, “Disposable microscope objective lenses for fluorescence correlation spectroscopy using latex microspheres,” Anal. Chem. 80, 6800–6804 (2008). [CrossRef]
  20. E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3, 413–417 (2008). [CrossRef]
  21. M. H. Wu and G. M. Whitesides, “Fabrication of arrays of two-dimensional micropatterns using microspheres as microlenses for projection lithography,” Appl. Phys. Lett. 78, 2273–2275 (2001). [CrossRef]
  22. J. Kim, K. Cho, I. Kim, W. M. Kim, T. S. Lee, and K.-S. Lee, “Fabrication of plasmonic nanodiscs by photonic nanojet lithography,” Appl. Phys. Express 5, 025201 (2012). [CrossRef]
  23. S.-C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express 16, 13713–13719 (2008). [CrossRef]
  24. Z. Chen, A. Taflove, and V. Backman, “Highly efficient optical coupling and transport phenomena in chains of dielectric microspheres,” Opt. Lett. 31, 389–391 (2006). [CrossRef]
  25. A. M. Kapitonov and V. N. Astratov, “Observation of nanojet-induced modes with small propagation losses in chains of coupled spherical cavities,” Opt. Lett. 32, 409–411 (2007). [CrossRef]
  26. S. Yang and V. N. Astratov, “Photonic nanojet-induced modes in chains of size-disordered microspheres with an attenuation of only 0.08 dB per sphere,” Appl. Phys. Lett. 92, 261111 (2008). [CrossRef]
  27. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems—II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 253, 358–379 (1959). [CrossRef]
  28. Z. Chen, H. Chu, and S. Li, “Optical metrology using a photonic nanojet,” U.S. patent 7,394,535 (1July2008).
  29. A. Darafsheh, A. Fardad, N. M. Fried, A. N. Antoszyk, H. S. Ying, and V. N. Astratov, “Contact focusing multimodal microprobes for ultraprecise laser tissue surgery,” Opt. Express 19, 3440–3448 (2011). [CrossRef]
  30. H. Aouani, F. Deiss, J. Wenger, P. Ferrand, N. Sojic, and H. Rigneault, “Optical-fiber-microsphere for remote fluorescence correlation spectroscopy,” Opt. Express 17, 19085–19092 (2009). [CrossRef]
  31. N. Ma, P. C. Ashok, D. J. Stevenson, F. J. Gunn-Moore, and K. Dholakia, “Integrated optical transfection system using a microlens fiber combined with microfluidic gene delivery,” Biomed. Opt. Express 1, 694–705 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited