OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 36 — Dec. 20, 2012
  • pp: 8656–8668

Time-domain fluorescence-guided diffuse optical tomography based on the third-order simplified harmonics approximation

Wenjuan Ma, Wei Zhang, Xi Yi, Jiao Li, Linhui Wu, Xin Wang, Limin Zhang, Zhongxing Zhou, Huijuan Zhao, and Feng Gao  »View Author Affiliations


Applied Optics, Vol. 51, Issue 36, pp. 8656-8668 (2012)
http://dx.doi.org/10.1364/AO.51.008656


View Full Text Article

Enhanced HTML    Acrobat PDF (1432 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Extensive efforts have been made to integrate diffuse optical tomography (DOT) with other imaging modalities, such as magnetic-resonance imaging and x-ray computerized tomography, for its performance improvement. However, the experimental apparatus is in general intricate and costly due to adoption of the physically distinct radiation regimes. In this study, a time-domain fluorescence-guided DOT methodology that incorporates a priori localization information provided by diffuse fluorescence tomography (DFT) is investigated in an attempt to optimize recovery of the optical property distributions. The methodology is based on a specifically designed multichannel time-correlated single-photon-counting DOT/DFT system as well as a featured-data image reconstruction scheme that is developed within the framework of the generalized pulse spectrum technique and employs the third-order simplified harmonics approximation to the radiative transfer equation as the forward model. We have validated the methodology using phantom experiments and demonstrated that, with the guidance of fluorescence a priori, the quantitativeness and spatial resolution of the recovered optical target can be considerably improved in terms of the absorption and scattering images.

© 2012 Optical Society of America

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(170.6920) Medical optics and biotechnology : Time-resolved imaging
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: June 6, 2012
Revised Manuscript: September 22, 2012
Manuscript Accepted: November 15, 2012
Published: December 17, 2012

Virtual Issues
Vol. 8, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Wenjuan Ma, Wei Zhang, Xi Yi, Jiao Li, Linhui Wu, Xin Wang, Limin Zhang, Zhongxing Zhou, Huijuan Zhao, and Feng Gao, "Time-domain fluorescence-guided diffuse optical tomography based on the third-order simplified harmonics approximation," Appl. Opt. 51, 8656-8668 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-36-8656


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010). [CrossRef]
  2. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005). [CrossRef]
  3. S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25, 123010 (2009). [CrossRef]
  4. J. T. Bruulsema, J. E. Hayward, T. J. Farrell, M. S. Patterson, L. Heinemann, M. Berger, T. Koschinsky, J. Sandahl-Christiansen, H. Orskov, M. Essenpreis, G. Schmelzeisen-Redeker, and D. Böcker, “Correlation between blood glucose concentration in diabetics and noninvasively measured tissue optical scattering coefficient,” Opt. Lett. 22, 190–192 (1997). [CrossRef]
  5. R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14, 024020 (2009). [CrossRef]
  6. Y. Zhen, Q.-Z. Zhang, S. Eric, and H.-B. Jiang, “Three-dimensional diffuse optical tomography of osteoarthritis: initial results in the finger joints,” J. Biomed. Opt. 12, 034001(2007). [CrossRef]
  7. J. C. Hebden and T. Austin, “Optical tomography of the neonatal brain,” Eur. Radiol. 17, 2926–2933 (2007). [CrossRef]
  8. H.-J. Zhao, F. Gao, Y. Tanikawa, K. Homma, and Y. Yamada, “Time-resolved optical tomographic imaging for the provision of both anatomical and functional information about biological tissue,” Appl. Opt. 44, 1905–1916 (2005). [CrossRef]
  9. F. Gao, H.-J. Zhao, and Y. Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt. 41, 778–791 (2002). [CrossRef]
  10. H.-J. Zhao, F. Gao, Y. Tanikawa, and Y. Yamada, “Time-resolved diffuse optical tomography and its application to in vitro and in vivo imaging,” J. Biomed. Opt. 12, 062107 (2007). [CrossRef]
  11. D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G.-Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review,” Breast Cancer Res. Treat. 108, 9–22 (2008). [CrossRef]
  12. H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Phil. Trans. R. Soc. A 367, 3073–3093 (2009). [CrossRef]
  13. P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpener, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15, 8043–8058 (2007). [CrossRef]
  14. M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol. 50, 2837–2858 (2005). [CrossRef]
  15. V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–760 (2002). [CrossRef]
  16. F. Stuker, J. Ripoll, and M. Rudin, “Fluorescence molecular tomography: principles and potential for pharmaceutical research,” Pharmaceutics 3, 229–274 (2011). [CrossRef]
  17. F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole body fluorescence imaging: review of instruments, methods and applications,” J. Photochem. Photobiol. B Biol. 98, 77–94 (2010). [CrossRef]
  18. A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696–6716 (2007). [CrossRef]
  19. S. van de Ven, A. J. Wiethoff, T. Nielsen, B. Brendel, M. van der Voort, R. Nachabe, M. van de Mark, M. van Beek, L. Nakker, L. Fels, S. Elias, P. Luijten, and W. Mali, “A novel fluorescent imaging agent for diffuse optical tomography of the breast: first clinical experience in patients,” Mol. Imaging Biol. 12, 343–348 (2010). [CrossRef]
  20. A. D. Klose and E. W. Larsen, “Light transport in biological tissue based on the simplified spherical harmonics equations,” J. Comput. Phys. 220, 441–470 (2006). [CrossRef]
  21. A. D. Klose and T. Pöchinger, “Excitation-resolved fluorescence tomography with simplified spherical harmonics equations,” Phys. Med. Biol. 56, 1443–1469 (2011). [CrossRef]
  22. Z. Yuan, Q. Z. Zhang, E. Sobel, and H. B. Jiang, “Comparison of diffusion approximation and higher order diffusion equations for optical tomography of osteoarthritis,” J. Biomed. Opt. 14, 054013 (2009). [CrossRef]
  23. Y.-J. Lu, B.-H. Zhu, H.-O. Shen, J. C. Rasmussen, G. Wang, and E. M. Sevick-Muraca, “A parallel adaptive finite element simplified spherical harmonics approximation solver for frequency domain fluorescence molecular imaging,” Phys. Med. Biol. 55, 4625–4645 (2010). [CrossRef]
  24. F. Gao, J. Li, L.-M. Zhang, P. Poulet, H.-J. Zhao, and Y. Yamada, “Simultaneous fluorescence yield and lifetime tomography from time-resolved transmittances of a small-animal-stimulating phantom,” Appl. Opt. 49, 3163–3172 (2010). [CrossRef]
  25. R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y.-P. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt. 14, 024004 (2009). [CrossRef]
  26. F. Gao, H.-J. Zhao, Y. Tanikawa, and Y. Yamada, “A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography,” Opt. Express 14, 7109–7124 (2006). [CrossRef]
  27. F. Gao, H.-J. Zhao, Y. Tianikawa, and Y. Yamada, “Time-resolved diffuse optical tomography using a modified generalized pulse spectrum technique,” IEICI Trans. Inf. Sys. E85-D, 133–142 (2002).
  28. X. Intes, V. Ntziachristos, J. P. Culver, A. Yodh, and B. Chance, “Projection access order in algebraic reconstruction technique for diffuse optical tomography,” Phys. Med. Biol. 47, N1–N10 (2002). [CrossRef]
  29. Y.-T. Lin, W. C. Barber, J. S. Iwanczyk, W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a combined tri-modality FT/DOT/XCT system,” Opt. Express 18, 7835–7850 (2010). [CrossRef]
  30. R. C. Aster, B. Borchers, and C. H. Thurber, Parameter Estimation and Inverse Problems, 2nd ed. (Academic, 2012).
  31. F. Yang, F. Gao, P.-Q. Ruan, and H.-J. Zhao, “Combined domain-decomposition and matrix-decomposition scheme for large-scale diffuse optical tomography,” Appl. Opt. 49, 3111–3125 (2010). [CrossRef]
  32. R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice-Hall, 2008).
  33. J. Gomes, and O. Faugeras, “Reconciling distance functions and level sets,” J. Vis. Commun. Image Represent. 11, 209–223 (2000). [CrossRef]
  34. C.-M. Li, C.-Y. Xu, C.-F. Gui, and M.-D. Fox, “Level set evolution without re-initialization: a new variational formulation,” IEEE Computer Society Conference CVPR (IEEE, 2005), Vol. 1, pp. 430–436. [CrossRef]
  35. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer, 2005).
  36. E. M. C. Hillman, J. C. Hebden, F. E. W. Schmidt, S. R. Arridge, M. Schweiger, H. Dehgani, and D. Deply, “Calibration techniques and datatype extraction for time-resolved optical tomography,” Rev. Sci. Instrum. 71, 3415–3427 (2000). [CrossRef]
  37. D. Qin, H. Zhao, Y. Tanikawa, and F. Gao, “Experimental determination of optical properties in turbid medium by TCSPC technique,” Proc. SPIE 6434, 64342E (2007). [CrossRef]
  38. M. E. Kilmer, E. L. Miller, A. Barbaro, and D. Boas, “Three-dimensional shape-based imaging of absorption perturbations for diffuse optical tomography,” Appl. Opt. 42, 3129–3144(2003). [CrossRef]
  39. A. Z. Zacharopoulos, S. R. Arridge, O. Dorn, V. Kolehmainen, and J. Sikora, “Three-dimensional reconstruction of the shape and piecewise constant region values for optical tomography using spherical harmonic parameterization and a bound element method,” Inverse Probl. 22, 1509–1532 (2006). [CrossRef]
  40. D. D. Nolting, J. C. Gore, and W. Pham, “Near-infrared dyes: probe development and applications in optical molecular imaging,”Curr. Org. Synth. 8, 521–534 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited