OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 36 — Dec. 20, 2012
  • pp: 8669–8676

Qualitative assessment of laser-induced breakdown spectra generated with a femtosecond fiber laser

Huan Huang, Lih-Mei Yang, and Jian Liu  »View Author Affiliations

Applied Optics, Vol. 51, Issue 36, pp. 8669-8676 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (815 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper presents what is to our knowledge the first evaluation of laser-induced breakdown spectroscopy (LIBS) studies on elemental composition detection and identification by employing a femtosecond (fs) fiber laser. Qualitative LIBS spectra were obtained in ambient air using a 1030 nm fs fiber laser. Specific ion and neutral emission lines of different materials have been characterized, including metal, metal alloy, semiconductor, and glass. The performance and LIBS spectra of an intensified CCD (ICCD) system and a nonintensified CCD system were compared. Time-resolved emission spectra depicting the detailed plasma evolution was collected from sub-spot-size craters. The gated ICCD gives improved signal-to-noise ratio by a factor of 20 compared with a nongated, nonintensified CCD system. This shows a potential portable and field-deployable LIBS system for versatile and rapid analysis of chemicals and special materials.

© 2012 Optical Society of America

OCIS Codes
(140.3440) Lasers and laser optics : Laser-induced breakdown
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:

Original Manuscript: October 5, 2012
Revised Manuscript: November 19, 2012
Manuscript Accepted: November 20, 2012
Published: December 17, 2012

Huan Huang, Lih-Mei Yang, and Jian Liu, "Qualitative assessment of laser-induced breakdown spectra generated with a femtosecond fiber laser," Appl. Opt. 51, 8669-8676 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenröder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta, Part B 55, 1771–1785 (2000). [CrossRef]
  2. D. J. Hwang, H. Jeon, C. P. Grigoropoulos, J. Yoo, and R. E. Russo, “Femtosecond laser ablation induced plasma characteristics from submicron craters in thin metal film,” Appl. Phys. Lett. 91, 251118–251113 (2007). [CrossRef]
  3. M. Sabsabi and P. Cielo, “Quantitative analysis of aluminum alloys by laser-induced breakdown spectroscopy and plasma characterization,” Appl. Spectrosc. 49, 499–507 (1995). [CrossRef]
  4. C. Geertsen, J. L. Lacour, P. Mauchien, and L. Pierrard, “Evaluation of laser ablation optical emission spectrometry for microanalysis in aluminium samples,” Spectrochim. Acta Part B 51, 1403–1416 (1996). [CrossRef]
  5. H. Bette and R. Noll, “High speed laser-induced breakdown spectrometry for scanning microanalysis,” J. Phys. D 37, 1281–1288 (2004). [CrossRef]
  6. R. Sattmann, I. Monch, H. Krause, R. Noll, S. Couris, A. Hatziapostolou, A. Mavromanolakis, C. Fotakis, E. Larrauri, and R. Miguel, “Laser-induced breakdown spectroscopy for polymer identification,” Appl. Spectrosc. 52, 456–461 (1998). [CrossRef]
  7. M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701–084709 (2006). [CrossRef]
  8. A. Assion, M. Wollenhaupt, L. Haag, F. Mayorov, C. Sarpe-Tudoran, M. Winter, U. Kutschera, and T. Baumert, “Femtosecond laser-induced-breakdown spectrometry for Ca 2+ analysis of biological samples with high spatial resolution,” Appl. Phys. B 77, 391–397 (2003). [CrossRef]
  9. A. Kumar, F. Y. Yueh, J. P. Singh, and S. Burgess, “Characterization of malignant tissue cells by laser-induced breakdown spectroscopy,” Appl. Opt. 43, 5399–5403 (2004). [CrossRef]
  10. A. Ball, V. Hohreiter, and D. Hahn, “Hydrogen leak detection using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 59, 348–353 (2005). [CrossRef]
  11. M. Tran, B. W. Smith, D. W. Hahn, and J. D. Winefordner, “Detection of gaseous and particulate fluorides by laser-induced breakdown spectroscopy,” Appl. Spectrosc. 55, 1455–1461 (2001). [CrossRef]
  12. F. C. De Lucia, J. L. Gottfried, and A. W. Miziolek, “Evaluation of femtosecond laser-induced breakdown spectroscopy for explosive residue detection,” Opt. Express 17, 419–425(2009). [CrossRef]
  13. F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Multivariate analysis of standoff laser-induced breakdown spectroscopy spectra for classification of explosive-containing residues,” Appl. Opt. 47, G112–G121(2008). [CrossRef]
  14. C. Brown, M. Baudelet, C. Bridge, M. Fisher, M. Sigman, P. Dagdigian, and M. Richardson, “Atmosphere issues in detection of explosives and organic residues,” Proc. SPIE 7304, 73041D (2009).
  15. Y. Dikmelik, C. McEnnis, and J. B. Spicer, “Femtosecond and nanosecond laser-induced breakdown spectroscopy of trinitrotoluene,” Opt. Express 16, 5332–5337 (2008). [CrossRef]
  16. K. Amal, S. Elnaby, V. Palleschi, A. Salvetti, and M. Harith, “Comparison between single-and double-pulse LIBS at different air pressures on silicon target,” Appl. Phys. B 83, 651–657 (2006). [CrossRef]
  17. R. Sattmann, V. Sturm, and R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses,” J. Phys. D 28, 2181 (1999). [CrossRef]
  18. M. E. Asgill, M. S. Brown, K. Frische, W. M. Roquemore, and D. W. Hahn, “Double-pulse and single-pulse laser-induced breakdown spectroscopy for distinguishing between gaseous and particulate phase analytes,” Appl. Opt. 49, C110–C119 (2010). [CrossRef]
  19. B. Le Drogoff, M. Chaker, J. Margot, M. Sabsabi, O. Barthélemy, T. Johnston, S. Laville, and F. Vidal, “Influence of the laser pulse duration on spectrochemical analysis of solids by laser-induced plasma spectroscopy,” Appl. Spectrosc. 58, 122–129 (2004). [CrossRef]
  20. A. Semerok, C. Chaléard, V. Detalle, J. L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, and M. Perdrix, “Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses,” Appl. Surf. Sci. 138, 311–314 (1999). [CrossRef]
  21. B. Le Drogoff, J. Margot, M. Chaker, M. Sabsabi, O. Barthelemy, T. Johnston, S. Laville, F. Vidal, and Y. Von Kaenel, “Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys,” Spectrochim. Acta Part B 56, 987–1002 (2001). [CrossRef]
  22. M. R. Leahy-Hoppa, J. Miragliotta, R. Osiander, J. Burnett, Y. Dikmelik, C. McEnnis, and J. B. Spicer, “Ultrafast laser-based spectroscopy and sensing: applications in LIBS, CARS, and THz spectroscopy,” Sensors 10, 4342–4372(2010). [CrossRef]
  23. M. Baudelet, C. Willis, L. Shah, and M. Richardson, “Laser-induced breakdown spectroscopy of copper with a 2 microm thulium fiber laser,” Opt. Express 18, 7905 (2010). [CrossRef]
  24. J. F. Y. Gravel, F. R. Doucet, P. Bouchard, and M. Sabsabi, “Evaluation of a compact high power pulsed fiber laser source for laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 26, 1354–1361 (2011). [CrossRef]
  25. B. T. Fisher, H. A. Johnsen, S. G. Buckley, and D. W. Hahn, “Temporal gating for the optimization of laser-induced breakdown spectroscopy detection and analysis of toxic metals,” Appl. Spectrosc. 55, 1312–1319 (2001). [CrossRef]
  26. J. E. Carranza, E. Gibb, B. W. Smith, D. W. Hahn, and J. D. Winefordner, “Comparison of nonintensified and intensified CCD detectors for laser-induced breakdown spectroscopy,” Appl. Opt. 42, 6016–6021 (2003). [CrossRef]
  27. S. Baudach, J. Bonse, and W. Kautek, “Ablation experiments on polyimide with femtosecond laser pulses,” Appl. Phys. A 69, S395–S398 (1999). [CrossRef]
  28. H. Huang and Z. Guo, “Ultra-short pulsed laser PDMS thin-layer separation and micro-fabrication,” J. Micromech. Microeng. 19, 055007 (2009). [CrossRef]
  29. M. Sabsabi, R. Heon, and L. St-Onge, “Critical evaluation of gated CCD detectors for laser-induced breakdown spectroscopy analysis,” Spectrochim. Acta Part B 60, 1211–1216 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited