OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 36 — Dec. 20, 2012
  • pp: 8702–8730

On-orbit calibration of SeaWiFS

Robert E. Eplee, Jr., Gerhard Meister, Frederick S. Patt, Robert A. Barnes, Sean W. Bailey, Bryan A. Franz, and Charles R. McClain  »View Author Affiliations

Applied Optics, Vol. 51, Issue 36, pp. 8702-8730 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (4169 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Ocean color climate data records (CDRs) require water-leaving radiances with 5% absolute and 1% relative accuracies as input. Because of the amplification of any sensor calibration errors by the atmospheric correction, the 1% relative accuracy requirement translates into a 0.1% long-term radiometric stability requirement for top-of-the-atmosphere (TOA) radiances. The rigorous prelaunch and on-orbit calibration program developed and implemented for Sea-viewing Wide Field-of-view Sensor (SeaWiFS) by the NASA Ocean Biology Processing Group (OBPG) has led to the incorporation of significant changes into the on-orbit calibration methodology over the 13-year lifetime of the instrument. Evolving instrument performance and ongoing algorithm refinement have resulted in updates to approaches for the lunar, solar, and vicarious calibration of SeaWiFS. The uncertainties in the calibrated TOA radiances are addressed in terms of accuracy (biases in the measurements), precision (scatter in the measurements), and stability (repeatability of the measurements). The biases are 2%–3% from lunar calibration and 1%–2% from vicarious calibration. The precision is 0.16% from solar signal-to-noise ratios, 0.13% from lunar residuals, and 0.10% from vicarious gains. The long-term stability of the TOA radiances, derived from the lunar time series, is 0.13%. The stability of the vicariously calibrated TOA radiances, incorporating the uncertainties of the in situ measurements and the atmospheric correction, is 0.30%. This stability of the radiometric calibration of SeaWiFS over its 13-year on-orbit lifetime has allowed the OBPG to produce CDRs from the ocean color data set.

© 2012 Optical Society of America

OCIS Codes
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(120.5630) Instrumentation, measurement, and metrology : Radiometry
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(280.4991) Remote sensing and sensors : Passive remote sensing
(010.1690) Atmospheric and oceanic optics : Color

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: September 25, 2012
Manuscript Accepted: October 31, 2012
Published: December 20, 2012

Robert E. Eplee, Gerhard Meister, Frederick S. Patt, Robert A. Barnes, Sean W. Bailey, Bryan A. Franz, and Charles R. McClain, "On-orbit calibration of SeaWiFS," Appl. Opt. 51, 8702-8730 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. A. Franz, S. W. Bailey, G. Meister, and P. J. Werdell, “Quality and consistency of the NASA ocean color data record,” Proc. Ocean Optics XXI, Glasgow, Scotland, 8–12 October (2012).
  2. National Research Council, Climate Data Records from Environmental Satellites: Interim Report (The National Academies, 2004).
  3. C. R. McClain, W. E. Esaias, W. Barnes, B. Guenther, D. Endres, S. B. Hooker, G. Mitchell, and R. Barnes, SeaWiFS Calibration and Validation Plan, S. B. Hooker and E. R. Firestone, eds., 3 NASA Tech. Memo. 104566, (NASA Goddard Space Flight Center, 1992).
  4. H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth observing system era,” J. Geophys. Res. 102, 17081–17106 (1997). [CrossRef]
  5. B. A. Franz, S. W. Bailey, P. J. Werdell, and C. R. McClain, “Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry,” Appl. Opt. 46, 5068–5082 (2007). [CrossRef]
  6. H. H. Kieffer, “Photometric stability of the lunar surface,” Icarus 130, 323–327 (1997). [CrossRef]
  7. R. E. Eplee, R. A. Barnes, F. S. Patt, G. Meister, and C. R. McClain, “SeaWiFS lunar calibration methodology after six years on orbit,” Proc. SPIE 5542, 1–13 (2004). [CrossRef]
  8. H. H. Kieffer and T. C. Stone, “The spectral irradiance of the Moon,” Astron. J. 129, 2887–2901 (2005). [CrossRef]
  9. T. C. Stone and H. H. Kieffer, “Use of the Moon to support on-orbit sensor calibration for climate change measurements,” Proc. SPIE 6296, 62960Y (2006). [CrossRef]
  10. T. C. Stone, “Radiometric calibration stability and inter-calibration of solar-band instruments in orbit using the Moon,” Proc. SPIE 7081, 70810X (2008). [CrossRef]
  11. D. K. Clark, H. R. Gordon, K. J. Voss, Y. Ge, W. Broenkow, and C. Trees, “Validation of atmospheric correction over the oceans,” J. Geophys. Res. 99, 7293–7307 (1997).
  12. D. K. Clark, M. E. Feinholz, M. A. Yarbrough, B. C. Johnson, S. W. Brown, Y. S. Kim, and R. A. Barnes, “Overview of the radiometric calibration of MOBY,” Proc. SPIE 4483, 64–76 (2002). [CrossRef]
  13. R. A. Barnes, A. W. Holmes, W. L. Barnes, W. E. Esaias, C. R. McClain, and T. Svitek, SeaWiFS Prelaunch Radiometric Calibration and Spectral Characterization, S. B. Hooker, E. R. Firestone, and J. G. Acker, eds. 23, NASA Tech. Memo. 104566 (NASA Goddard Space Flight Center, 1994).
  14. R. E. Eplee, F. S. Patt, B. A. Franz, S. W. Bailey, G. Meister, and C. R. McClain, “SeaWiFS on-orbit gain and detector calibrations: effect on ocean products,” Appl. Opt. 46, 6733–6750 (2007). [CrossRef]
  15. B. C. Johnson, E. E. Early, R. E. Eplee, R. A. Barnes, and R. T. Caffrey, The 1997 Prelaunch Radiometric Calibration of SeaWiFS, S. B. Hooker and E. R. Firestone, eds. 4, NASA Tech. Memo. 206892 (NASA Goddard Space Flight Center, 1999).
  16. R. E. Eplee, J.-Q. Sun, G. Meister, F. S. Patt, X. Xiong, and C. R. McClain, “Cross calibration of SeaWiFS and MODIS using on-orbit observations of the Moon,” Appl. Opt. 50, 120–133 (2011). [CrossRef]
  17. R. A. Barnes, R. E. Eplee, G. M. Schmidt, F. S. Patt, and C. R. McClain, “Calibration of SeaWiFS. I. Direct techniques,” Appl. Opt. 40, 6682–6700 (2001). [CrossRef]
  18. A. H. Johnston, “Radiation damage of electronic and optoelectronic devices in space,” presented at the 4th International Workshop on Radiation Effects on Semiconductor Devices for Space Application, Tsukuba, Japan (11–13, October 2000).
  19. R. E. Eplee, G. Meister, F. S. Patt, and C. R. McClain, “The on-orbit calibration of SeaWiFS: functional fits to the lunar time series,” Proc. SPIE 7081, 708112 (2008). [CrossRef]
  20. R. E. Eplee, R. A. Barnes, S. W. Bailey, and P. J. Werdell, “Changes to the on-orbit calibration of SeaWiFS,” in Algorithm Updates for the Fourth SeaWiFS Data Reprocessing, S. B. Hooker and E. R. Firestone, eds. 22, NASA Tech. Memo. 206892 (NASA Goddard Space Flight Center, 2003), pp. 12–19.
  21. R. E. Eplee, F. S. Patt, G. Meister, B. A. Franz, S. W. Bailey, and C. R. McClain, “The on-orbit calibration of SeaWiFS: revised temperature and gain corrections,” Proc. SPIE 6677, 66770E (2007). [CrossRef]
  22. R. E. Eplee, R. A. Barnes, and C. R. McClain, “SeaWiFS detector and gain calibrations: Four year of on-orbit stability,” Proc. SPIE 4814, 282–288 (2002). [CrossRef]
  23. R. E. Eplee, W. D. Robinson, S. W. Bailey, D. K. Clark, P. J. Werdell, M. Wang, R. A. Barnes, and C. R. McClain, “Calibration of SeaWiFS. II. Vicarious techniques,” Appl. Opt. 40, 6701–6718 (2001). [CrossRef]
  24. H. R. Gordon, “In-orbit calibration strategy for ocean color sensors,” Remote Sens. Environ. 63, 265–278 (1998). [CrossRef]
  25. M. Wang and H. R. Gordon, “Calibration of ocean color scanners: how much error is acceptable in the near infrared?,” Remote Sens. Environ. 82, 497–504 (2002). [CrossRef]
  26. Z. Ahmad, B. A. Franz, C. R. McClain, E. J. Kwiatkowska, J. Werdell, E. P. Shettle, and B. N. Holben, “New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans,” Appl. Opt. 49, 5545–5560 (2010). [CrossRef]
  27. S. W. Brown, S. J. Flora, M. F. Feinholz, M. A. Yarbrough, T. Houlihan, D. Peters, Y. S. Kim, J. L. Mueller, B. C. Johnson, and D. K. Clark, “The Marine Optical BuoY (MOBY) radiometric calibration and uncertainty budget for ocean color satellite sensor vicarious calibration,” Proc. SPIE 6744, 67441M (2007). [CrossRef]
  28. B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998). [CrossRef]
  29. B. N. Holben, D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. S. Schafer, B. Chatenet, F. Lavenu, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karneli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, and G. Zibordi, “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” J. Geophys. Res. 106, 12067–12097 (2001). [CrossRef]
  30. B. A. Franz, E. J. Ainsworth, and S. Bailey, “SeaWiFS vicarious calibration: an alternative approach using in situ observations of oceanic and atmospheric optical properties,” in In Situ Aerosol Optical Thickness Collected by the SIMBIOS Program (1997–2000): Protocols, Data QC, and Analysis, G. S. Fargion, R. A. Barnes, and C. McClain, eds., NASA Tech. Memo. 209982 (NASA Goddard Space Flight Center, 2001), pp. 88–96.
  31. M. Wang, K. D. Knobelspiesse, and C. R. McClain, “Study of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) aerosol optical property data over ocean in combination with the ocean color products,” J. Geophys. Res. 110, D10S06 (2005). [CrossRef]
  32. R. E. Eplee and F. S. Patt, “Cloud-top radiance analysis for SeaWiFS bilinear knee calibration,” in SeaWiFS Postlaunch Calibration and Validation Analyses, Part 1, S. B. Hooker and E. R. Firestone, eds. 9, NASA Tech. Memo. 206892 (NASA Goddard Space Flight Center, 2000), pp. 13–16.
  33. R. E. Eplee, S. W. Bailey, R. A. Barnes, H. H. Kieffer, and C. R. McClain, “Comparison of SeaWiFS on-orbit lunar and vicarious calibrations,” Proc. SPIE 6296, 629610(2006). [CrossRef]
  34. B. C. Johnson, S. W. Brown, and H. W. Yoon, “Radiometric calibration history of visible and near-infrared portable radiometers,” Metrologia 37, 423–426 (2000).
  35. C. R. McClain, “A decade of satellite ocean color observations,” Annu. Rev. Mar. Sci. 1, 19–42 (2009). [CrossRef]
  36. T. S. Kostadinov, D. A. Siegel, and S. Maritorena, “Global phytoplankton functional types from space: assessment vis the particle size distribution,” Biogeosciences 7, 3239–3257 (2010). [CrossRef]
  37. S. A. Henson, J. L. Sarmiento, J. P. Dunne, L. Bopp, I. Lima, S. C. Doney, J. John, and C. Beaulieu, “Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity,” Biogeosciences 7, 621–640 (2010). [CrossRef]
  38. F. P. Chavez, M. Messie, and J. T. Pennington, “Marine primary production in relation to climate variability and change,” Annu. Rev. Mar. Sci. 3, 227–260 (2011). [CrossRef]
  39. D. A. Siegel, M. J. Behrenfeld, S. Maritorena, C. R. McClain, D. Antoine, S. W. Bailey, P. S. Bontempi, E. S. Boss, H. M. Dierssen, S. C. Doney, R. E. Eplee, R. H. Evans, G. C. Feldman, E. Fields, B. A. Franz, N. A. Kuring, C. Mengelt, N. B. Nelson, F. S. Patt, W. D. Robinson, J. L. Sarmiento, C. M. Swan, P. J. Werdell, T. K. Westberry, J. G. Wilding, and J. A. Yoder, “Regional and global assessments of phytoplankton dynamics from the SeaWiFS mission,” Remote Sens. Environ. (to be published, 2013).
  40. C. Wilson, “The rocky road from research to operations for satellite ocean-colour data in fishery management,” ICES J. Mar. Sci. 68, 677–686 (2011). [CrossRef]
  41. R. P. Stumpf, M. E. Culver, P. A. Tester, M. Tomlinson, G. J. Kirkpatrick, B. A. Pederson, E. Truby, V. Ransibrahmanakul, and M. Soracco, “Monitoring Karenia brevis blooms in the Gulf of Mexico using satellite ocean color imagery and other data,” Harmful Algae 2, 147–160 (2003).
  42. D. A. Siegel and B. A. Franz, “Century of phytoplankton change,” Nature 466, 569–571 (2010). [CrossRef]
  43. National Research Council, From Research to Operations in Weather Satellites and Numerical Weather Prediction: Crossing the Valley of Death (The National Academies, 2000).
  44. National Research Council, Satellite Observations of the Earth’s Environment: Accelerating the Transition of Research to Operations (The National Academies, 2003).
  45. National Research Council, Assessing Requirements for Sustained Ocean Color Research and Operations (The National Academies, 2011).
  46. R. E. Eplee, G. Meister, F. S. Patt, B. A. Franz, and C. R. McClain, “Uncertainty assessment of the SeaWiFS on-orbit calibration,” Proc. SPIE 8153, 81530B (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited