OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 36 — Dec. 20, 2012
  • pp: 8762–8768

Experimental demonstration of high-speed full-range Fourier domain optical coherence tomography imaging using orthogonally polarized light and a phase-shifting algorithm

Hsu-Chih Cheng and Ming-Shiuan Shiu  »View Author Affiliations


Applied Optics, Vol. 51, Issue 36, pp. 8762-8768 (2012)
http://dx.doi.org/10.1364/AO.51.008762


View Full Text Article

Enhanced HTML    Acrobat PDF (606 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This study describes a phase-shifting method based on orthogonal polarized light by using complex Fourier domain optical coherence tomography (FD-OCT) to increase the speed of image scanning and to resist vibration and other environmental disturbances. Two FD-OCT interferograms corresponding to orthogonal polarization components can be obtained simultaneously. After using a π/2 phase-shifting algorithm, removing unwanted components becomes possible, including dc and autocorrelation terms, from the interferogram. This method doubles the measurement range. In other words, this approach enables one-shot and full-range FD-OCT. Experimental results show that the reconstruction parameters of the sample are close to the conventional time-domain optical coherence tomography.

© 2012 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(170.0110) Medical optics and biotechnology : Imaging systems

ToC Category:
Imaging Systems

History
Original Manuscript: May 29, 2012
Revised Manuscript: September 12, 2012
Manuscript Accepted: November 15, 2012
Published: December 19, 2012

Virtual Issues
Vol. 8, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Hsu-Chih Cheng and Ming-Shiuan Shiu, "Experimental demonstration of high-speed full-range Fourier domain optical coherence tomography imaging using orthogonally polarized light and a phase-shifting algorithm," Appl. Opt. 51, 8762-8768 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-36-8762


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef]
  2. R. C. Youngquist, S. Carr, and D. E. N. Davies, “Optical coherence domain reflectometry: a new optical evaluation technique,” Opt. Lett. 12, 158–160 (1987). [CrossRef]
  3. K. Takada, I. Yokohama, K. Chida, and J. Noda, “New measurement system for fault location in optical waveguide devices based on an interferometric technique,” Appl. Opt. 26, 1603–1606 (1987). [CrossRef]
  4. W. Clivaz, F. Marquis-Weible, R. P. Salathe, R. P. Novak, and H. H. Gilgen, “High-resolution reflectometry in biological tissue,” Opt. Lett. 17, 4–6 (1992). [CrossRef]
  5. J. M. Schmitt, A. Knuttel, and R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt. 32, 6032–6042 (1993). [CrossRef]
  6. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27, 1415–1417 (2002). [CrossRef]
  7. R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, “Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography,” Opt. Lett. 28, 2201–2203 (2003). [CrossRef]
  8. E. Götzinger, M. Pircher, R. Leitgeb, and C. Hitzenberger, “High speed full range complex spectral domain optical coherence tomography,” Opt. Express 13, 583–594 (2005). [CrossRef]
  9. Y. Yasuno, S. Makita, T. Endo, G. Aoki, H. Sumimura, M. Itoh, and T. Yatagai, “One shot phase shifting Fourier domain optical coherence tomography by reference wavefront tilting,” Opt. Express 12, 6184–6191 (2004). [CrossRef]
  10. Y. Watanabe, Y. Hayasaka, M. Sato, and N. Tanno, “Full-field optical coherence tomography by achromatic phase shifting with a rotating polarizer,” Appl. Opt. 44, 1387–1392(2005). [CrossRef]
  11. B. J. Vakoc, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Elimination of depth degeneracy in optical frequency-domain imaging through polarization-based optical demodulation,” Opt. Lett. 31, 362–364 (2006). [CrossRef]
  12. M. V. Sarunic, B. E. Applegate, and J. A. Izatt, “Real-time quadrature projection complex conjugate resolved Fourier domain optical coherence tomography,” Opt. Lett. 31, 2426–2428 (2006). [CrossRef]
  13. R. K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” Appl. Phys. Lett. 90, 054103 (2007). [CrossRef]
  14. K. Lee, P. Meemon, W. Dallas, K. Hsu, and J. P. Rolland, “Dual detection full range frequency domain optical coherence tomography,” Opt. Lett. 35, 1058–1060 (2010). [CrossRef]
  15. H. C. Cheng, J. F. Huang, and Y. H. Hsieh, “Numerical analysis of one-shot full-range FD-OCT system based on orthogonally polarized light,” Opt. Commun. 282, 3040–3045 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited