OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 36 — Dec. 20, 2012
  • pp: 8817–8824

Nitric-oxide planar laser-induced fluorescence at 10 kHz in a seeded flow, a plasma discharge, and a flame

Stephen D. Hammack, Campbell D. Carter, James R. Gord, and Tonghun Lee  »View Author Affiliations

Applied Optics, Vol. 51, Issue 36, pp. 8817-8824 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (955 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This study demonstrates high-repetition-rate planar laser-induced fluorescence (PLIF) imaging of both cold (300K) and hot (2400K) nitric oxide (NO) at a framing rate of 10 kHz. The laser system is composed of a frequency-doubled dye laser pumped by the third harmonic of a 10 kHz Nd:YAG laser to generate continuously pulsed laser radiation at 226 nm for excitation of NO. The laser-induced fluorescence signal is detected using a high-frame rate, intensified CMOS camera, yielding a continuous cinematographic propagation of the NO plume where data acquisition duration is limited only by camera memory. The pulse energy of the beam is 20μJ with a spectral width 0.15cm1, though energies as high as 40 μJ were generated. Hot NO is generated by passing air through a DC transient-arc plasma torch that dissociates air. The plasma torch is also used to ignite and sustain a CH4/air premixed flame. Cold NO is imaged from a 1% NO flow (buffered by nitrogen). The estimated signal-to-noise ratio (SNR) for the cold seeded flow and air plasma exceeds 50 with expected NO concentrations of 6000–8000 parts per million (ppm, volume basis). Images show distinct, high-contrast boundaries. The plasma-assisted flame images have an SNR of less than 10 for concentrations reaching 1000 ppm. For many combustion applications, the pulse energy is insufficient for PLIF measurements. However, the equipment and strategies herein could be applied to high-frequency line imaging of NO at concentrations of 10–100 ppm. Generation of 226 nm radiation was also performed using sum-frequency mixing of the 532 nm pumped dye laser and 355 nm Nd:YAG third harmonic but was limited in energy to 14 μJ. Frequency tripling a 532 nm pumped dye laser produced 226 nm radiation at energies comparable to the 355 nm pumping scheme.

© 2012 Optical Society of America

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3530) Lasers and laser optics : Lasers, neodymium
(140.3600) Lasers and laser optics : Lasers, tunable
(300.2530) Spectroscopy : Fluorescence, laser-induced
(140.3538) Lasers and laser optics : Lasers, pulsed

ToC Category:
Lasers and Laser Optics

Original Manuscript: August 7, 2012
Revised Manuscript: October 17, 2012
Manuscript Accepted: October 26, 2012
Published: December 20, 2012

Stephen D. Hammack, Campbell D. Carter, James R. Gord, and Tonghun Lee, "Nitric-oxide planar laser-induced fluorescence at 10 kHz in a seeded flow, a plasma discharge, and a flame," Appl. Opt. 51, 8817-8824 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Kychakoff, R. D. Howe, R. K. Hanson, and J. C. McDaniel, “Quantitative visualization of combustion species in a plane,” Appl. Opt. 21, 3225–3227 (1982). [CrossRef]
  2. K. Kohse-Hoinghaus and J. B. Jeffries, Applied Combustion Diagnostics, Combustion: An International Series (Taylor and Francis, 2002).
  3. K. A. Watson, K. M. Lyons, J. M. Donbar, and C. D. Carter, “Scalar and velocity field measurements in a lifted CH4-air diffusion flame,” Combust. Flame 117, 257–271 (1999). [CrossRef]
  4. A. M. Steinberg, J. F. Driscoll, D. J. Micka, S. L. Ceccio, and C. D. Carter, “A cinema stereoscopic PIV system for the measurement of micro- and meso-scale turbulent premixed flame dynamics,” in Proceedings of 5th US Combust. Meeting (Curran Associates, 2007), pp. 672–682.
  5. M. W. Renfro, M. S. Klassen, G. B. King, and N. M. Laurendeau, “Time-series measurements of ch concentration in turbulent CH4/air flames by use of picosecond time-resolved laser-induced fluorescence,” Opt. Lett. 22, 175–177 (1997). [CrossRef]
  6. M. W. Renfro, S. D. Pack, G. B. King, and N. M. Laurendeau, “Hydroxyl time-series measurements in laminar and moderately turbulent methane/air diffusion flames,” Combust. Flame 115, 443–455 (1998). [CrossRef]
  7. C. F. Kaminski, J. Hult, and M. Aldén, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68, 757–760 (1999). [CrossRef]
  8. W. Paa, D. Müller, H. Stafast, and W. Triebel, “Flame turbulences recorded at 1 kHz using planar laser induced fluorescence upon hot band excitation of oh radicals,” Appl. Phys. B 86, 1–5 (2007). [CrossRef]
  9. W. Paa, D. Müller, A. Gawlik, and W. Triebel, “Combined multispecies PLIF diagnostics with kHz rate in a technical fuel mixing system relevant for combustion processes,” Proc. SPIE 58808, 58800N (2005). [CrossRef]
  10. B. Thurow, N. Jiang, M. Samimy, and W. Lempert, “Narrow-linewidth megahertz-rate pluse-burst laser for high-speed flow diagnostics,” Appl. Opt. 43, 5064–5073 (2004). [CrossRef]
  11. N. Jiang, W. R. Lempert, G. L. Switzer, T. R. Meyer, and J. R. Gord, “Narrow-linewidth megahertz-repetition-rate optical parametric oscillator for high-speed flow and combustion diagnostics,” Appl. Opt. 47, 64–71 (2008). [CrossRef]
  12. N. Jiang and W. R. Lempert, “Ultrahigh-frame-rate nitric oxide planar laser-induced fluorescence imaging,” Opt. Lett. 33, 2236–2238 (2008). [CrossRef]
  13. N. Jiang, M. Webster, W. R. Lempert, J. D. Miller, T. R. Meyer, C. B. Ivey, and P. M. Danehy, “Mhz-rate nitric oxide planar laser-induced fluorescence imaging in a mach 10 hypersonic wind tunnel,” Appl. Opt. 50, A20–A28 (2011). [CrossRef]
  14. J. D. Miller, M. Slipchenko, T. R. Meyer, N. Jiang, W. R. Lempert, and J. R. Gord, “Ultrahigh-frame-rate OH fluorescence imaging in turbulent flames using a burst-mode optical parametric oscillator,” Opt. Lett. 34, 1309–1311 (2009). [CrossRef]
  15. M. N. Slipchenko, J. D. Miller, S. Roy, J. R. Gord, S. A. Danczyk, and T. R. Meyer, “Quasi-continuous burst-mode laser for high-speed planar imaging,” Opt. Lett. 37, 1346–1348 (2012). [CrossRef]
  16. I. Boxx, C. Heeger, R. Gordon, B. Böhm, A. Dreizler, and W. Meier, “On the importance of temporal context in interpretation of flame discontinuities,” Combust. Flame 156, 269–271 (2009). [CrossRef]
  17. I. Boxx, C. Heeger, R. Gordon, B. Böhm, M. Aigner, A. Dreizler, and W. Meier, “Simultaneous three-component PIV/OH-PLIF measurements of a turbulent lifted, C3H8-argon jet diffusion flame at 1.5 kHz repetition rate,” Proc. Combust. Inst. 32, 905–912 (2009). [CrossRef]
  18. I. Boxx, M. Stöhr, C. Carter, and W. Meier, “Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames,” Appl. Phys. B 95, 23–29 (2009). [CrossRef]
  19. A. Steinberg, I. Boxx, C. Arndt, J. Frank, and W. Meier, “Experimental study of flame-hole reignition mechanisms in a turbulent non-premixed jet flame using sustained multi-kHz PIV and crossed-plane OH PLIF,” Proc. Combust. Inst. 33, 1663–1672 (2011). [CrossRef]
  20. R. Gordon, I. Boxx, C. Carter, A. Dreizler, and W. Meier, “Lifted diffusion flame stabilisation: Conditional analysis of multi-parameter high-repetition rate diagnostics at the flame base,” Flow Turbul. Combust. 88, 503–527 (2012). [CrossRef]
  21. C. Kittler and A. Dreizler, “Cinematographic imaging of hydroxyl radicals in turbulent flames by planar laser-induced fluorescence up to 5 kHz repetition rate,” Appl. Phys. B 89, 163–166 (2007). [CrossRef]
  22. B. Böhm, C. Heeger, I. Boxx, W. Meier, and A. Dreizler, “Time-resolved conditional flow field statistics in extinguishing turbulent opposed jet flames using simultaneous highspeed PIV/OH-PLIF,” Proc. Combust. Inst. 32, 1647–1654 (2009). [CrossRef]
  23. A. M. Steinberg, I. Boxx, M. Stöhr, C. D. Carter, and W. Meier, “Flow-flame interactions causing acoustically coupled heat release fluctuations in a thermo-acoustically unstable gas turbine model combustor,” Combust. Flame 157, 2250–2266 (2010). [CrossRef]
  24. I. Boxx, C. Arndt, C. Carter, and W. Meier, “High-speed laser diagnostics for the study of flame dynamics in a lean premixed gas turbine model combustor,” Exp. Fluids 52, 555–567 (2012). [CrossRef]
  25. M. Stöhr, I. Boxx, C. Carter, and W. Meier, “Dynamics of lean blowout of a swirl-stabilized flame in a gas turbine model combustor,” Proc. Combust. Inst. 33, 2953–2960(2011). [CrossRef]
  26. C. T. Bowman, “Gas-phase reaction mechanisms for nitrogen oxide formation and removal in combustion,” in Pollutants from Combustion, C. Vovelle, ed. (Kluwer, 2000), pp. 123–144.
  27. R. L. McKenzie and K. P. Gross, “Two-photon excitation of nitric oxide fluorescence as a temperature indicator in unsteady gasdynamic processes,” Appl. Opt. 20, 2153–2165 (1981). [CrossRef]
  28. J. M. Seitzman, G. Kychakoff, and R. K. Hanson, “Instantaneous temperature field measurements using planar laser-induced fluorescence,” Opt. Lett. 10, 439–441 (1985). [CrossRef]
  29. A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schäfer, V. Sick, J. Wolfrum, W. Hentschel, and K. P. Schindler, “DI diesel engine combustion visualized by combined laser techniques,” Symp. (Int.) Combust., [Proc.] 24, 1605–1612 (1992). [CrossRef]
  30. P. H. Paul, M. P. Lee, B. K. McMillin, J. M. Seitzman, and R. K. Hanson, “Application of planar laser-induced fluorescence imaging diagnostics to supersonic reacting flow,” 28th AIAA/SAE/ASME/ASEE Joint Propulsion Conference, (American Institute for Aeronautics and Astronautics, 1990), paper  AIAA-90-1844.
  31. C. Schulz, B. Yip, V. Sick, and J. Wolfrum, “A laser-induced fluorescence scheme for imaging nitric oxide in engines,” Chem. Phys. Lett. 242, 259–264 (1995). [CrossRef]
  32. M. Knapp, A. Luczak, H. Schlüter, V. Beushausen, W. Hentschel, and P. Andresen, “Crank-angle-resolved laser-induced fluorescence imaging of NO in a spark-ignition engine at 248 nm and correlations to flame front propagation and pressure release,” Appl. Opt. 35, 4009–4017 (1996). [CrossRef]
  33. C. S. Cooper and N. M. Laurendeau, “Short communication parametric study of no production in high-pressure, lean premixed-prevaporized spray flames,” Combust. Sci. Technol. 167, 311–318 (2001). [CrossRef]
  34. Y. D. Korolev and I. B. Matveev, “Nonsteady-state processes in a plasma pilot for ignition and flame control,” IEEE Trans. Plasma Sci. 34, 2507–2513 (2006). [CrossRef]
  35. Y. D. Korolev, O. B. Frants, N. V. Landl, V. G. Geyman, and I. B. Matveev, “Glow-to-spark transitions in a plasma system for ignition and combustion control,” IEEE Trans. Plasma Sci. 35, 1651–1657 (2007). [CrossRef]
  36. Y. D. Korolev, O. B. Frants, N. V. Landl, V. G. Geyman, and I. B. Matveev, “Nonsteady-state gas-discharge processes in plasmatron for combustion sustaining and hydrocarbon decomposition,” IEEE Trans. Plasma Sci. 37, 586–592 (2009). [CrossRef]
  37. X. Rao, I. Matveev, and T. Lee, “Nitric oxide formation in a premixed flame with high-level plasma energy coupling,” IEEE Trans. Plasma Sci. 37, 2303–2313 (2009). [CrossRef]
  38. X. Rao, S. Hammack, T. Lee, C. Carter, and I. Matveev, “Combustion dynamics of plasma enhanced premixed and nonpremixed flames,” IEEE Trans. Plasma Sci. 38, 3265–3271 (2010). [CrossRef]
  39. W. G. Bessler, C. Schulz, V. Sick, and J. W. Daily, “A versatile modeling tool for nitric oxide LIF spectra,” in Proceedings of Third Joint Meeting of the U.S. Sections of The Combustion Institute (Combustion Institute, 2003), p. PI05.
  40. T. B. Settersten, B. D. Patterson, and W. H. Humphries, “Radiative lifetimes of NO A2Σ+(v′=0,1,2) and the electronic transition moment of the A2Σ+−X2Π system,” J. Chem. Phys. 131, 104309 (2009). [CrossRef]
  41. A. Bao, “Ignition of hydrocarbon fuels by a repetitively pulsed nanosecond pulse duration plasma,” thesis (Ohio State University, 2008).
  42. B. F. Gordiets, C. M. Ferreira, V. L. Guerra, J. M. A. H. Loureiro, J. Nahorny, D. Pagnon, M. Touzeau, and M. Vialle, “Kinetic model of a low pressure N2O2 flowing glow discharge,” IEEE Trans. Plasma Sci. 23, 750–768 (1995). [CrossRef]
  43. W. Kim, H. Do, M. G. Mungal, and M. A. Cappelli, “Investigation of NO production and flame structure in plasma enhanced premixed combustion,” Proc. Combust. Inst. 31, 3319–3326 (2007). [CrossRef]
  44. W. Kim, M. Godfrey Mungal, and M. A. Cappelli, “The role of in situ reforming in plasma enhanced ultra lean premixed methane/air flames,” Combust. Flame 157, 374–383 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (3873 KB)     
» Media 2: AVI (3570 KB)     
» Media 3: AVI (3958 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited