OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 36 — Dec. 20, 2012
  • pp: 8825–8835

Signal-to-noise performance analysis of streak tube imaging lidar systems. I. Cascaded model

Hongru Yang, Lei Wu, Xiaopeng Wang, Chao Chen, Bing Yu, Bin Yang, Liang Yuan, Lipeng Wu, Zhanli Xue, Gaoping Li, and Baoning Wu  »View Author Affiliations

Applied Optics, Vol. 51, Issue 36, pp. 8825-8835 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (293 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Streak tube imaging lidar (STIL) is an active imaging system using a pulsed laser transmitter and a streak tube receiver to produce 3D range and intensity imagery. The STIL has recently attracted a great deal of interest and attention due to its advantages of wide azimuth field-of-view, high range and angle resolution, and high frame rate. This work investigates the signal-to-noise performance of STIL systems. A theoretical model for characterizing the signal-to-noise performance of the STIL system with an internal or external intensified streak tube receiver is presented, based on the linear cascaded systems theory of signal and noise propagation. The STIL system is decomposed into a series of cascaded imaging chains whose signal and noise transfer properties are described by the general (or the spatial-frequency dependent) noise factors (NFs). Expressions for the general NFs of the cascaded chains (or the main components) in the STIL system are derived. The work presented here is useful for the design and evaluation of STIL systems.

© 2012 Optical Society of America

OCIS Codes
(030.4280) Coherence and statistical optics : Noise in imaging systems
(110.0110) Imaging systems : Imaging systems
(110.4280) Imaging systems : Noise in imaging systems
(280.3640) Remote sensing and sensors : Lidar

ToC Category:
Remote Sensing and Sensors

Original Manuscript: August 8, 2012
Manuscript Accepted: November 12, 2012
Published: December 20, 2012

Hongru Yang, Lei Wu, Xiaopeng Wang, Chao Chen, Bing Yu, Bin Yang, Liang Yuan, Lipeng Wu, Zhanli Xue, Gaoping Li, and Baoning Wu, "Signal-to-noise performance analysis of streak tube imaging lidar systems. I. Cascaded model," Appl. Opt. 51, 8825-8835 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. W. McLean, “High resolution 3-D underwater imaging,” Proc. SPIE 3761, 10–19 (1999). [CrossRef]
  2. M. J. DeWeert, S. E. Moran, B. L. Ulich, and R. N. Keeler, “Numerical simulations of the relative performance of streak-tube, range-gated, and PMT-based airborne imaging lidar systems with realistic sea surfaces,” Proc. SPIE 3761, 115–129 (1999). [CrossRef]
  3. B. C. Redman, A. J. Griffis, and E. B. Schibley, “Streak tube imaging lidar (STIL) for 3-D imaging of terrestrial targets,” Tech. Report (Arête Associates, Tucson, Ariz., 2000).
  4. V. B. Lebedev, G. G. Feldman, O. V. Aleksander, A. A. Nazaryan, A. A. Tsovyan, Y. A. Yedigaryan, and S. S. Melikyan, “Application of K008 camera within lidar for laser sounding of water width from air,” Proc. SPIE 5580, 282–292 (2005). [CrossRef]
  5. S. Li, Q. Wang, J. Lin, and Y. Guang, “Research of range resolution of streak tube imaging system,” Proc. SPIE 6279, 62790C (2007). [CrossRef]
  6. J. Wei, Q. Wang, J. Sun, and J. Gao, “High-resolution imaging of a long-distance target with a single-slit streak-tube lidar,” J. Russ. Laser Res. 31, 307–312 (2010). [CrossRef]
  7. A. D. Gleckler, “Multiple-slit streak tube imaging lidar (MS-STIL) applications,” Proc. SPIE 4035, 266–278 (2000). [CrossRef]
  8. A. D. Gleckler, A. Gelbart, and J. M. Bowden, “Multispectral and hyperspectral 3D imaging lidar based upon the multiple slit streak tube imaging lidar,” Proc. SPIE 4377, 328–335 (2001). [CrossRef]
  9. A. D. Gleckler and A. Gelbart, “Three-dimensional imaging polarimetry,” Proc. SPIE 4377, 175–185 (2001). [CrossRef]
  10. A. Gelbart, B. C. Redman, R. S. Light, C. A. Schwartzlow, and A. J. Griffis, “Flash lidar based on multiple-slit streak tube imaging lidar,” Proc. SPIE 4723, 9–18 (2002). [CrossRef]
  11. J. Liu, Q. Wang, S. Li, Y. Cheng, and J. Wei, “Research on a flash imaging lidar based on a multiple-streak tube,” Laser Phys. 19, 115–120 (2009). [CrossRef]
  12. J. Sun and Q. Wang, “4-D image reconstruction for streak tube imaging lidar,” Laser Phys. 19, 502–504 (2009). [CrossRef]
  13. Q. Wang, J. Liu, and S. Li, “Analysis of detectable range of multiple-slit streak tube imaging lidar,” J. Russ. Laser Res. 30, 296–303 (2009). [CrossRef]
  14. J. Sun, J. Liu, and Q. Wang, “A multiple-slit streak tube imaging lidar and its detection ability analysis by flash lidar equation,” Optik (to be published). [CrossRef]
  15. R. T. Eagleton and S. F. James, “Dynamic range measurements on streak imaging tubes with internal and external microchannel plate image amplification,” Rev. Sci. Instrum. 74, 2215–2219 (2003). [CrossRef]
  16. M. Rabbani, R. L. Shaw, and R. Van Metter, “Detective quantum efficiency of imaging systems with amplifying and scattering mechanisms,” J. Opt. Soc. Am. A 4, 895–901 (1987). [CrossRef]
  17. P. C. Bunch, K. E. Huff, and R. L. Van Metter, “Analysis of the detective quantum efficiency of a radiographic screenfilm combination,” J. Opt. Soc. Am. A 4, 902–909 (1987). [CrossRef]
  18. M. Rabbani and R. Shaw, “Analysis of signal and noise propagation for several imaging mechanisms,” J. Opt. Soc. Am. A 6, 1156–1164 (1989). [CrossRef]
  19. I. A. Cunningham and R. Shaw, “Signal-to-noise optimization of medical imaging systems,” J. Opt. Soc. Am. 16, 621–632 (1999). [CrossRef]
  20. M. B. Williams, P. U. Simoni, L. Smilowitz, M. Stanton, W. Phillips, and A. Stewart, “Analysis of the detective quantum efficiency of a developmental detector for digital mammography,” Med. Phys. 26, 2273–2285 (1999). [CrossRef]
  21. G. Zanell and R. Zannoni, “DQE of imaging detectors in terms of spatial frequency,” Nucl. Instrum. Methods 437, 163–167 (1999). [CrossRef]
  22. I. A. Cunningham, M. S. Westmore, and A. Fenster, “A spatial-frequency dependent quantum accounting diagram and detective quantum efficiency model of signal and noise propagation in cascaded imaging systems,” Med. Phys. 21, 417–427 (1994). [CrossRef]
  23. J. P. Bissonette, I. A. Cunningham, D. A. Jaffray, A. Fenster, and P. Munro, “A quantum accounting and detective quantum efficiency analysis for video-based portal imaging,” Med. Phys. 24, 815–826 (1997). [CrossRef]
  24. J. H. Siewerdsen, L. E. Antonuk, Y. El-Mohri, J. Yorkston, W. Huang, J. M. Boudry, and I. A. Cunningham, “Empirical and theoretical investigation of the noise performance of indirect detection, active matrix flat-panel imagers (AMFPIs) for diagnostic radiology,” Med. Phys. 24, 71–89 (1997). [CrossRef]
  25. W. Zhao and J. A. Rowlands, “Digital radiology using active matrix readout of amorphous selenium: theoretical analysis of detective quantum efficiency,” Med. Phys. 24, 1819–1833 (1997). [CrossRef]
  26. I. A. Cunningham, “Applied linear-systems theory,” in Handbook of Medical Imaging, J. Beutel, H. L. Kundel, and R. L. Van Metter, eds. Vol. 1: Physics and Psychophysics (SPIE, Bellingham, 2010), Chap. 2.
  27. S. E. Moran, B. L. Ulich, and W. P. Elkins, “Intensified CCD (ICCD) dynamic range and noise performance,” Proc. SPIE 3173, 430–457 (1997). [CrossRef]
  28. G. D. Boreman, Modulation Transfer Function in Optical and Electro-Optical Systems (SPIE, 2001), Chap. 1.
  29. E. H. Eberhardt, “Gain model for microchannel plates,” Appl. Opt. 18, 1418–1423 (1979). [CrossRef]
  30. E. H. Eberhardt, “An operational model for microchannel plate devices,” IEEE Trans. Nucl. Sci. 28, 712–717(1981). [CrossRef]
  31. C. B. Johnson and L. D. Owen, “Image tube intensified electronic imaging,” in Handbook of Optics, 3rd ed. Vol. II. Design, Fabrication and Testing, Sources and Detectors, Radiometry and Photometry (McGraw-Hill Companies, 2010), Chap. 31.
  32. A. Whiteson, “Streak tube modulation transfer functions,” Proc. SPIE 1155, 344–355 (1990). [CrossRef]
  33. C. B. Johnson, L. T. Hunkler, S. A. Letzring, and P. Jaanimagi, Streak tube camera receiver definition studies, Tech. Report (ITT Electro-Optical Products Div, 1990).
  34. C. B. Johnson, S. Nevin, J. Bebris, and J. B. Abshire, “Circular-scan streak tube with solid-state readout,” Appl. Opt. 19, 3491–3495 (1980). [CrossRef]
  35. S. Xiang and G. Ni, The Principle of Photoelectronic Imaging Devices (National Defence Industry, Beijing, 1999).
  36. Y. Cheng, S. Xiang, and H. Shi, “Theoretical model for resolution calculation of third generation image intensifiers,” J. Appl. Opt. 28, 578–581 (2007) (in Chinese).
  37. A. D. A. Maidment and M. J. Yaffe, “Analysis of signal propagation in optically coupled detectors for digital mammography: II. Lens and fiber optics,” Phys. Med. Biol. 41, 475–493 (1996). [CrossRef]
  38. H. Liu, L. L. Fajardo, and B. C. Penny, “Signal-to-noise ratio and detective quantum efficiency analysis of optically coupled CCD mammography imaging systems,” Acad. Radiol. 3, 799–805 (1996). [CrossRef]
  39. S. Hejazi and D. P. Trauernicht, “System considerations in CCD-based x-ray imaging for digital chest radiography and digital mammography,” Med. Phys. 24, 287–297 (1997). [CrossRef]
  40. S. Vedantham, “Design and characterization of a high-resolution cardiovascular imager,” Ph.D. thesis, Worcester Polytechnic Institute, 2002.
  41. E. J. Ientilucci, “Synthetic simulation and modeling of image intensified CCDs (IICCD),” MS. thesis, Rochester Institute of Technology, 2000.
  42. A. Frenkel, M. A. Sartor, and M. S. Wlodawski, “Photon-noise-limited operation of intensified CCD cameras,” Appl. Opt. 36, 5288–5297 (1997). [CrossRef]
  43. D. Dussault and P. Hoess, “Noise performance comparison of ICCD with CCD and EMCCD cameras,” Proc. SPIE 5563, 195–204 (2004). [CrossRef]
  44. L. Wu, X. Wang, H. Yang, B. Yu, C. Chen, B. Yang, L. Yuan, L. Wu, Z. Xue, G. Li, and B. Wu, “Signal-to-noise performance analysis of streak tube imaging lidar systems. II. Theoretical analysis and discussion,” Appl. Opt.51, 8836–8847 (2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited