OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 36 — Dec. 20, 2012
  • pp: 8883–8892

Weighted depth compensation algorithm for fluorescence molecular tomography reconstruction

Fei Liu, Mingze Li, Bin Zhang, Jianwen Luo, and Jing Bai  »View Author Affiliations


Applied Optics, Vol. 51, Issue 36, pp. 8883-8892 (2012)
http://dx.doi.org/10.1364/AO.51.008883


View Full Text Article

Enhanced HTML    Acrobat PDF (1078 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In fluorescence molecular tomography (FMT), diffuse-light measurements are obtained from a series of source–detector pairs placed on the boundary of the medium. The sensitivity of measurements deteriorates quickly with increased distance from the sources and detectors and therefore yields poor depth quantitative recovery. A depth compensation algorithm is presented in this paper to reconstruct fluorescent inclusions in deep tissues. Two weight matrixes are employed to level off sensitivity differences and enhance prominent elements of the solution. Results of numerical and phantom experiments demonstrate that both relative quantitation and spatial resolution of FMT are improved for inclusions at different depths.

© 2012 Optical Society of America

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: September 19, 2012
Revised Manuscript: September 23, 2012
Manuscript Accepted: October 16, 2012
Published: December 20, 2012

Virtual Issues
Vol. 8, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Fei Liu, Mingze Li, Bin Zhang, Jianwen Luo, and Jing Bai, "Weighted depth compensation algorithm for fluorescence molecular tomography reconstruction," Appl. Opt. 51, 8883-8892 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-36-8883


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. E. Graves, R. Weissleder, and V. Ntziachristos, “Fluorescence molecular imaging of small animal tumor models,” Curr. Mol. Med. 4, 419–430 (2004). [CrossRef]
  2. V. Ntziachristos, C. Bremer, and R. Weissleder, “Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging,” Eur. Radiol. 13, 195–208 (2003). [CrossRef]
  3. V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7, 603–614 (2010). [CrossRef]
  4. F. Leblond, S. C. Davis, P. A. Valdes, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: review of instruments, methods and applications,” J. Photochem. Photobiol. B 98, 77–94 (2010). [CrossRef]
  5. J. Ripoll and V. Ntziachristos, “Imaging scattering media from a distance: theory and applications of noncontact optical tomography,” Mod. Phys. Lett. B 18, 1403–1431 (2004). [CrossRef]
  6. S. R. Arridge, “Linear and non-linear methods in optical tomography,” in Biomedical Topical Meetings, Technical Digest (Optical Society of America, 2000), Vol. 38, pp. 495–497.
  7. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999). [CrossRef]
  8. A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24, 1377–1386 (2005). [CrossRef]
  9. S. C. Davis, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Contrast-detail analysis characterizing diffuse optical fluorescence tomography image reconstruction,” J. Biomed. Opt. 10, 050501 (2005). [CrossRef]
  10. Y. Lin, W. C. Barber, J. S. Iwanczyk, W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a combined tri-modality FT/DOT/XCT system,” Opt. Express 18, 7835–7850 (2010). [CrossRef]
  11. B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999). [CrossRef]
  12. H. J. Niu, P. Guo, X. D. Song, and T. Z. Jiang, “Improving depth resolution of diffuse optical tomography with an exponential adjustment method based on maximum singular value of layered sensitivity,” Chin. Opt. Lett. 6, 886–888 (2008). [CrossRef]
  13. H. Niu, Z. J. Lin, F. Tian, S. Dhamne, and H. Liu, “Comprehensive Investigation of three-dimensional diffuse optical tomography with depth compensation algorithm,” J. Biomed. Opt. 15, 046005 (2010). [CrossRef]
  14. P. K. Yalavarthy, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Critical computational aspects of near infrared circular tomographic imaging: analysis of measurement number, mesh resolution and reconstruction basis,” Opt. Express 14, 6113–6127 (2006). [CrossRef]
  15. A. Marjono, A. Yano, S. Okawa, F. Gao, and Y. Yamada, “Total light approach of time-domain fluorescence diffuse optical tomography,” Opt. Express 16, 15268–15285 (2008). [CrossRef]
  16. A. D. Zacharopoulos, P. Svenmarker, J. Axelsson, M. Schweiger, S. R. Arridge, and S. Andersson-Engels, “A matrix-free algorithm for multiple wavelength fluorescence tomography,” Opt. Express 17, 3025–3035 (2009). [CrossRef]
  17. A. Godavarty, A. Thompson, R. Roy, M. Gurfinkel, M. Eppstein, C. Zhang, and E. Sevick-Muraca, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9, 488–496 (2004). [CrossRef]
  18. X. L. Song, D. F. Wang, N. G. Chen, J. Bai, and H. Wang, “Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm,” Opt. Express 15, 18300–18317 (2007). [CrossRef]
  19. M. A. Naser and M. S. Patterson, “Improved bioluminescence and fluorescence reconstruction algorithms using diffuse optical tomography, normalized data, and optimized selection of the permissible source region,” Biomed. Opt. Express 2, 169–184 (2011). [CrossRef]
  20. A. Soubret and V. Ntziachristos, “Fluorescence molecular tomography in the presence of background fluorescence,” Phys. Med. Biol. 51, 3983–4001 (2006). [CrossRef]
  21. D. Wang, X. Liu, Y. Chen, and J. Bai, “A novel finite-element-based algorithm for fluorescence molecular tomography of heterogeneous media,” IEEE Trans. Inf. Technol. Biomed. 13, 766–773 (2009). [CrossRef]
  22. H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems (Springer Netherlands, 1996).
  23. P. Hansen, “Analysis of discrete ill-posed problems by means of the L-curve,” SIAM Rev. 34, 561–580 (1992). [CrossRef]
  24. A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol. 50, 5421–5441 (2005). [CrossRef]
  25. B. Zhang, X. Cao, F. Liu, X. Liu, X. Wang, and J. Bai, “Early-photon fluorescence tomography of a heterogeneous mouse model with the telegraph equation,” Appl. Opt. 50, 5397–5407 (2011). [CrossRef]
  26. V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett. 26, 893–895 (2001). [CrossRef]
  27. F. Liu, X. Liu, D. Wang, B. Zhang, and J. Bai, “A parallel excitation based fluorescence molecular tomography system for whole-body simultaneous imaging of small animals,” Ann. Biomed. Eng. 38, 3440–3448 (2010). [CrossRef]
  28. D. Hyde, R. Schulz, D. Brooks, E. Miller, and V. Ntziachristos, “Performance dependence of hybrid x-ray computed tomography/fluorescence molecular tomography on the optical forward problem,” J. Opt. Soc. Am. A 26, 919–923 (2009). [CrossRef]
  29. D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth,” Appl. Opt. 46, 1669–1678 (2007). [CrossRef]
  30. M. Li, X. Cao, F. Liu, B. Zhang, J. Luo, and J. Bai, “Reconstruction of fluorescence molecular tomography using a neighborhood regularization,” IEEE Trans. Biomed. Eng. 59, 1799–1803 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited