OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 4 — Feb. 1, 2012
  • pp: 422–428

Optimization of nanotube electrode geometry in a liquid crystal media from wavefront aberrations

Ranjith Rajasekharan, Qing Dai, Haider Butt, Kanghee Won, Timothy D. Wilkinson, and Gehan A. J. Amaratunga  »View Author Affiliations

Applied Optics, Vol. 51, Issue 4, pp. 422-428 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (761 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper presents experimental optimization of number and geometry of nanotube electrodes in a liquid crystal media from wavefront aberrations for realizing nanophotonic devices. The refractive-index gradient profiles from different nanotube geometries—arrays of one, three, four, and five—were studied along with wavefront aberrations using Zernike polynomials. The optimizations help the device to make application in the areas of voltage reconfigurable microlens arrays, high-resolution displays, wavefront sensors, holograms, and phase modulators.

© 2012 Optical Society of America

OCIS Codes
(230.0230) Optical devices : Optical devices
(230.3720) Optical devices : Liquid-crystal devices
(350.4600) Other areas of optics : Optical engineering
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Optical Devices

Original Manuscript: July 19, 2011
Revised Manuscript: August 23, 2011
Manuscript Accepted: August 23, 2011
Published: January 24, 2012

Ranjith Rajasekharan, Qing Dai, Haider Butt, Kanghee Won, Timothy D. Wilkinson, and Gehan A. J. Amaratunga, "Optimization of nanotube electrode geometry in a liquid crystal media from wavefront aberrations," Appl. Opt. 51, 422-428 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S.-Y. Lu and L.-C. Chien, “Carbon nanotube doped liquid crystal OCB cells: physical and electro-optical properties,” Opt. Express 16, 12777–12785 (2008).
  2. S. J. Jeong, P. Sureshkumar, K.-U. Jeong, A. K. Srivastava, S. H. Lee, S. H. Jeong, Y. H. Lee, R. Lu, and S.-T. Wu, “Unusual double four-lobe textures generated by the motion of carbon nanotubes in a nematic liquid crystal,” Opt. Express 15, 11698–11705 (2007). [CrossRef]
  3. T. D. Wilkinson, X. Wang, K. B. K. Teo, and W. I. Milne, “Sparse multiwall carbon nanotube electrode arrays for liquid-crystal photonic devices,” Adv. Mater. 20, 363–366 (2008). [CrossRef]
  4. R. Rajasekharan, Q. Dai, and T. D. Wilkinson, “Electro-optic characteristics of a transparent nanophotonic device based on carbon nanotubes and liquid crystals,” Appl. Opt. 49, 2099–2104 (2010). [CrossRef]
  5. W. I. Milne, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, S. B. Lee, D. G. Hasko, H. Ahmed, O. Groening, P. Legagneux, L. Gangloff, J. P. Schnell, G. Pirio, D. Pribat, M. Castignolles, A. Loiseau, V. Semet, and V. Thien Binh, “Electrical and field emission investigation of individual carbon nanotubes from plasma enhanced chemical vapour deposition,” Diamond Rel. Mater. 12, 422–428 (2003). [CrossRef]
  6. R. Rajasekharan, H. Butt, and T. D. Wilkinson, “Optical phase modulation using a hybrid carbon nanotube-liquid crystal nanophotonic device,” Opt. Lett. 34, 1237–1239(2009). [CrossRef]
  7. R. Rajasekharan, C. Bay, Q. Dai, J. Freeman, and T. D. Wilkinson, “ Electrically reconfigurable nanophotonic hybrid grating lens array,” Appl. Phys. Lett. 96, 233108(2010). [CrossRef]
  8. H. Butt, R. Rajasekharan, T. D. Wilkinson, and G. A. J. Amaratunga, “Electromagnetic modeling of multiwalled carbon nanotubes as nano-rod electrodes for optimizing device geometry in a nanophotonic device,” IEEE Trans. Nanotechnol. 10, 547–554 (2010). [CrossRef]
  9. Q. Dai, R. Rajesekharan, H. Butt, K. Won, X. Wang, T. D. Wilkinson, and G. Amaratunga, “Transparent liquid crystal based microlens array using vertically aligned carbon nanofibre electrodes on quartz substrates,” Nanotechnology 22, 115201 (2011). [CrossRef]
  10. X. Wang, T. D. Wilkinson, M. Mann, K. B. K. Teo, and W. I. Milne, “Characterization of a liquid crystal microlens array using multiwalled carbon nanotube electrodes,” Appl. Opt. 49, 3311–3315 (2010). [CrossRef]
  11. R. Rajesekharan, T. D. Wilkinson, P. J. W. Hands, and Q. Dai, “Nanophotonic three-dimensional microscope,” Nano Lett. 11, 2770–2773 (2011). [CrossRef]
  12. S.-T. Wu, U. Efron, and L. D. Hess, “Birefringence measurements of liquid crystals,” Appl. Opt. 23, 3911–3915 (1984). [CrossRef]
  13. R. Rajesekharan, C. Bay, J. Freeman, and T. D. Wilkinson, “Analysis of an array of micro lenses using Fourier-transform method,” IET Optoelectron. 4, 210–215 (2010). [CrossRef]
  14. H. Ren and S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15, 11328—11335 (2007). [CrossRef]
  15. H. Ren, Y. H. Fan, and S. T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82, 22–24 (2003). [CrossRef]
  16. A. K. Kirby, P. J. Hands, and G. D. Love, “Liquid crystal multi-mode lenses and axicons based on electronic phase shift control,” Opt. Express 15, 13496–13501 (2007). [CrossRef]
  17. R. Escalona, “Study of axial absorption in liquids by interferometry,” J. Opt. A 5, S355 (2003). [CrossRef]
  18. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited