OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 4 — Feb. 1, 2012
  • pp: 474–478

Experimental implementation of the multifunctional compact two-photon state analyzer

Eva Halenková, A. Černoch, K. Lemr, J. Soubusta, and S. Drusová  »View Author Affiliations


Applied Optics, Vol. 51, Issue 4, pp. 474-478 (2012)
http://dx.doi.org/10.1364/AO.51.000474


View Full Text Article

Enhanced HTML    Acrobat PDF (552 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on experimental implementation of a multifunctional two-photon state analyzer. The device aims to be compact and able to provide several important characteristics about any two-photon quantum state. It operates in two modes: first mode is the two-photon interference analysis giving the information about spectral properties of the photons and the degree of mutual indistinguishability. The second mode provides polarization analysis and complete two-photon state tomography. Density matrix estimated from the tomography data reveals namely the quantum state purity or negativity. This device was tested on the photon pairs generated by the Kwiat source.

© 2012 Optical Society of America

OCIS Codes
(040.5570) Detectors : Quantum detectors
(270.5570) Quantum optics : Quantum detectors
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Optics in Computing

History
Original Manuscript: July 1, 2011
Revised Manuscript: August 4, 2011
Manuscript Accepted: September 8, 2011
Published: January 26, 2012

Citation
Eva Halenková, A. Černoch, K. Lemr, J. Soubusta, and S. Drusová, "Experimental implementation of the multifunctional compact two-photon state analyzer," Appl. Opt. 51, 474-478 (2012)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-51-4-474


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
  2. D. Bruß and G. Leuchs, Lectures on Quantum Information (Wiley-VCH, 2007).
  3. A. V. Belinsky and D. N. Klyshko, “Two-photon wave packets,” Laser Physics 4, 663–666 (1994).
  4. A. Joobeur, B. E. A. Saleh, T. S. Larchuk, and M. C. Teich, “Coherence properties of entangled light beams generated by parametric down-conversion: Theory and experiment,” Phys. Rev. A 53, 4360–4363(1996). [CrossRef]
  5. G. Breitenbach, S. Schiller, and J. Mlynek, “Measurement of the quantum states of squeezed light,” Nature 387, 471–475(1997). [CrossRef]
  6. J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005). [CrossRef]
  7. J. Svozilik and J. Perina, “Properties of entangled photon pairs generated in periodically poled nonlinear crystals,” Phys. Rev. A 80, 023819 (2009). [CrossRef]
  8. J. Perina, and J. Svozilik, “Randomly poled nonlinear crystals as a source of photon pairs,” Phys. Rev. A 83, 033808 (2011).
  9. D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information (Springer, 2001).
  10. D. Dieks, “Communication by EPR devices,” Phys. Lett. A 92, 271–272 (1982).
  11. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement, e-print: quant-ph/0702225v2.
  12. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007). [CrossRef]
  13. T. Sleator and H. Weinfurter, “Realizable universal quantum logic gates,” Phys. Rev. Lett. 74, 4087 (1995). [CrossRef]
  14. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987). [CrossRef]
  15. T. B. Pittman, D. V. Strekalov, A. Migdall, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, “Can two-photon interference be considered the interference of two photons?,” Phys. Rev. Lett. 77, 1917–1920 (1996). [CrossRef]
  16. J. Soubusta, J. Peřina, M. Hendrych, O. Haderka, P. Trojek, and M. Dušek, “Experimental verification of energy correlations in entangled photon pairs,” Phys. Lett. A 319, 251–262 (2003). [CrossRef]
  17. Z. Y. Ou and L. Mandel, “Observation of spatial quantum beating with separated photodetectors,” Phys. Rev. Lett. 61, 54–57 (1988). [CrossRef]
  18. J. S. Bell, “On the Einstein Podolsky Rosen paradox,” Physics 1, 195–200 (1964).
  19. S. L. Braunstein, A. Mann, and M. Revzen, “Maximal violation of Bell inequalities for mixed states,” Phys. Rev. Lett. 68, 3259–3261 (1992). [CrossRef]
  20. M. Michler, K. Mattle, H. Weinfurter, and A. Zeilinger, “Interferometric Bell-state analysis,” Phys. Rev. A 53, R1209–R1212(1996). [CrossRef]
  21. M. Ježek, J. Fiurášek, and Z. Hradil, “Quantum inference of states and processes,” Phys. Rev. A 68, 012305(2003). [CrossRef]
  22. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization entangled photons,” Phys. Rev. A 60, R773–R776 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited