OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 51, Iss. 4 — Feb. 1, 2012
  • pp: 498–503

Two-dimensional mapping of the electron density in laser-produced plasmas

Mathew Polek, Sivanandan S. Harilal, and A. Hassanein  »View Author Affiliations

Applied Optics, Vol. 51, Issue 4, pp. 498-503 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (500 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We performed two-dimensional (2D) mapping of the electron density in a laser-produced plasma with high spatial and temporal resolution. The plasma was produced by irradiating an aluminum target with 1064 nm, 6 ns pulses from a Nd:YAG laser under vacuum conditions. Stark broadening of the lines was used to estimate the electron density at various locations inside the plasma. The 2D spectral images were captured at different spatial points in the plasma using an imaging spectrograph coupled to an intensified CCD at various times during the plasma expansion. A comparison between radially averaged and radially resolved electron density profiles showed differences in the estimated values at the earlier times of plume evolution and closer distances to the target. However, the measured radially averaged values are consistent with 2D radial profiles at later times and/or farther distances from the target surface.

© 2012 Optical Society of America

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(140.0140) Lasers and laser optics : Lasers and laser optics
(300.6550) Spectroscopy : Spectroscopy, visible

ToC Category:
Lasers and Laser Optics

Original Manuscript: September 1, 2011
Revised Manuscript: October 21, 2011
Manuscript Accepted: October 24, 2011
Published: January 27, 2012

Mathew Polek, Sivanandan S. Harilal, and A. Hassanein, "Two-dimensional mapping of the electron density in laser-produced plasmas," Appl. Opt. 51, 498-503 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. B. Chrisey and G. K. Hubler, Pulsed Laser Deposition of Thin Films (Wiley, 1994).
  2. S. S. Harilal, “Spatial and temporal evolution of argon sparks,” Appl. Opt. 43, 3931–3937 (2004). [CrossRef]
  3. J. P. Singh and S. N. Thakur, Laser-Induced Breakdown Spectroscopy (Elsevier, 2007).
  4. J. B. Ahmed and J. Cowpe, “Experimental and theoretical investigation of a self-absorbed spectral line emitted from laser-induced plasmas,” Appl. Opt. 49, 3607–3612 (2010). [CrossRef]
  5. C. Parigger, D. H. Plemmons, and J. W. L. Lewis, “Spatially and temporally resolved electron number density-measurements in a decaying laser-induced plasma using hydrogen-alpha line-profiles,” Appl. Opt. 34, 3325–3330 (1995). [CrossRef]
  6. V. N. Rai, H. S. Zhang, F. Y. Yueh, J. P. Singh, and A. Kumar, “Effect of steady magnetic field on laser-induced breakdown spectroscopy,” Appl. Opt. 42, 3662–3669 (2003). [CrossRef]
  7. A. K. Rai, V. K. Singh, V. Singh, S. N. Thakur, P. K. Rai, and J. P. Singh, “Quantitative analysis of gallstones using laser-induced breakdown spectroscopy,” Appl. Opt. 47, G38–G47 (2008). [CrossRef]
  8. V. Bakshi, EUV Sources for Lithography (SPIE, 2006).
  9. S. S. Harilal, B. O’Shay, M. S. Tillack, Y. Tao, R. Paguio, A. Nikroo, and C. A. Back, “Spectral control of emissions from tin doped targets for extreme ultraviolet lithography,” J. Phys. D 39, 484–487 (2006). [CrossRef]
  10. S. S. Harilal, R. W. Coons, P. Hough, and A. Hassanein, “Influence of spot size on extreme ultraviolet efficiency of laser-produced Sn plasmas,” Appl. Phys. Lett. 95, 221501 (2009). [CrossRef]
  11. D. Campos, S. S. Harilal, and A. Hassanein, “The effect of laser wavelength on emission and particle dynamics of Sn plasma,” J. Appl. Phys. 108, 113305 (2010). [CrossRef]
  12. R. W. Coons, S. S. Harilal, D. Campos, and A. Hassanein, “Analysis of atomic and ion debris features of laser-produced Sn and Li plasmas,” J. Appl. Phys. 108, 063306 (2010). [CrossRef]
  13. A. Hassanein, V. Sizyuk, T. Sizyuk, and S. Harilal, “Effects of plasma spatial profile on conversion efficiency of laser-produced plasma sources for EUV lithography,” J. Micro/Nanolithog. MEMS MOEMS 8, 041503 (2009). [CrossRef]
  14. S. S. Harilal, B. O’Shay, Y. Tao, and M. S. Tillack, “Ion debris mitigation from tin plasma using ambient gas, magnetic field and combined effects,” Appl. Phys. B 86, 547–553 (2007). [CrossRef]
  15. E. M. Monge, C. Aragon, and J. A. Aguilera, “Space- and time-resolved measurements of temperatures and electron densities of plasmas formed during laser ablation of metallic samples,” Appl. Phys. A 69, S691–S694 (1999). [CrossRef]
  16. J. A. Aguilera and C. Aragon, “Temperature and electron density distributions of laser-induced plasmas generated with an iron sample at different ambient gas pressures,” Appl. Surf. Sci. 197, 273–280 (2002). [CrossRef]
  17. D. Campos, S. S. Harilal, and A. Hassanein, “Laser wavelength effects on ionic and atomic emission from tin plasmas,” Appl. Phys. Lett. 96, 151501 (2010). [CrossRef]
  18. M. A. Bratescu, Y. Sakai, D. Yamaoka, Y. Suda, and H. Sugawara, “Electron and excited particle densities in a carbon ablation plume,” Appl. Surf. Sci. 197, 257–262 (2002). [CrossRef]
  19. B. Toftmann, J. Schou, T. N. Hansen, and J. G. Lunney, “Evolution of the plasma parameters in the expanding laser ablation plume of silver,” Appl. Surf. Sci. 186, 293–297(2002). [CrossRef]
  20. D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), Part I: review of basic diagnostics and plasma-particle interactions: still-challenging issues within the analytical plasma community,” Appl. Spectrosc. 64, 335A–366A (2010). [CrossRef]
  21. I. H. Hutchinson, Principles of Plasma Diagnostics(Cambridge University, 2002).
  22. H. R. Griem, Principles of Plasma Spectroscopy (Cambridge University, 1997).
  23. R. Noll, R. Sattmann, V. Sturm, and S. Winkelmann, “Space- and time-resolved dynamics of plasmas generated by laser double pulses interacting with metallic samples,” J. Anal. At. Spectrom. 19, 419–428 (2004). [CrossRef]
  24. J. A. Aguilera and C. Aragón, “Characterization of a laser-induced plasma by spatially resolved spectroscopy of neutral atom and ion emissions: comparison of local and spatially integrated measurements,” Spectrochim. Acta B 59, 1861–1876 (2004). [CrossRef]
  25. J. A. Aguilera, C. Aragon, and J. Bengoechea, “Spatial characterization of laser-induced plasmas by deconvolution of spatially resolved spectra,” Appl. Opt. 42, 5938–5946 (2003). [CrossRef]
  26. C. Aragon and J. A. Aguilera, “Determination of the local electron number density in laser-induced plasmas by Stark-broadened profiles of spectral lines: comparative results from H-alpha, Fe I and Si II lines,” Spectrochim. Acta B 65, 395–400 (2010). [CrossRef]
  27. M. Jedynski, J. Hoffman, W. Mroz, and Z. Szymanski, “Plasma plume induced during ArF laser ablation of hydroxyapatite,” Appl. Surf. Sci. 255, 2230–2236 (2008). [CrossRef]
  28. S. S. Harilal, B. O’Shay, M. S. Tillack, and M. V. Mathew, “Spectroscopic characterization of laser produced tin plasma,” J. Appl. Phys. 98, 013306 (2005). [CrossRef]
  29. C. Ursu, S. Gurlui, C. Focsa, and G. Popa, “Space- and time-resolved optical diagnosis for the study of laser ablation plasma dynamics,” Nucl. Instrum. Methods Phys. Res. Sect. B 267, 446–450 (2009). [CrossRef]
  30. N. M. Shaikh, S. Hafeez, B. Rashid, and M. A. Baig, “Spectroscopic studies of laser induced aluminum plasma using fundamental, second and third harmonics of a Nd:YAG laser,” Eur. Phys. J. D 44, 371–379 (2007). [CrossRef]
  31. H. R. Griem, Principles of Plasma Spectroscopy (Cambridge University, 1997).
  32. K. F. Al-Shboul, S. S. Harilal, and A. Hassanein, “Gas dynamic effects on formation of dimers in laser-produced carbon plasmas,” Appl. Phys. Lett. 99, 131506 (2011). [CrossRef]
  33. NIST Atomic Spectra Database Lines Data, http://www.nist.gov/pml/data/asd.cfm .
  34. G. Cristoforetti, “Orthogonal double-pulse versus single-pulse laser ablation at different air pressures: a comparison of the mass removal mechanisms,” Spectrochim. Acta B 64, 26–34 (2009). [CrossRef]
  35. R. C. Issac, S. S. Harilal, C. V. Bindhu, G. K. Varier, V. P. N. Nampoori, and C. P. G. Vallabhan, “Anomalous profile of a self-reversed resonance line from Ba+ in a laser produced plasma from YBa2Cu3O7,” Spectrochim. Acta B 52, 1791–1799 (1997). [CrossRef]
  36. J. T. Knudtson, W. B. Green, and D. G. Sutton, “The UV-visible spectroscopy of laser-produced aluminum plasmas,” J. Appl. Phys. 61, 4771–4780 (1987). [CrossRef]
  37. E. Sarandaev and M. K. Salakhov, “Regularities in the stark widths and shifts of spectral lines of singly ionized Al,” J. Quant. Spectrosc. Radiat. Transfer 56, 399–407 (1996). [CrossRef]
  38. A. W. Allen, M. Blaha, W. W. Jones, A. Sanchez, and H. R. Griem, “Stark-broadening measurement and calculations for a singly ionized Al line,” Phys. Rev. A 11, 477–479 (1975). [CrossRef]
  39. M. A. Khater, J. T. Costello, and E. T. Kennedy, “Optimization of the emission characteristics of laser-produced steel plasmas in the vacuum ultraviolet: significant improvements in carbon detection limits,” Appl. Spectrosc. 56, 970–983 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited